

PCIEV4BASE

User Manual C1080-3807

# VIRTEX-4<sup>™</sup> FPGA board with PCIe interface

Order number: C1080-3807



# Copyright information

Copyright © 2010 CESYS GmbH. All Rights Reserved. The information in this document is proprietary to CESYS GmbH. No part of this document may be reproduced in any form or by any means or used to make derivative work (such as translation, transformation or adaptation) without written permission from CESYS GmbH.

CESYS GmbH provides this documentation without warranty, term or condition of any kind, either express or implied, including, but not limited to, express and implied warranties of merchantability, fitness for a particular purpose, and non-infringement. While the information contained herein is believed to be accurate, such information is preliminary, and no representations or warranties of accuracy or completeness are made. In no event will CESYS GmbH be liable for damages arising directly or indirectly from any use of or reliance upon the information contained in this document. CESYS GmbH will make improvements or changes in the product(s) and/or program(s) described in this documentation at any time.

CESYS GmbH retains the right to make changes to this product at any time, without notice. Products may have minor variations to this publication, known as errata. CESYS GmbH assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of CESYS GmbH products.

CESYS GmbH and the CESYS logo are registered trademarks.

All product names are trademarks, registered trademarks, or service marks of their respective owner.

 $\Rightarrow$  Please check <u>www.cesys.com</u> to get the latest version of this document.

CESYS Gesellschaft für angewandte Mikroelektronik mbH Zeppelinstrasse 6a D – 91074 Herzogenaurach Germany

# Overview

# Summary of PCIeV4Base

The PCIeV4Base board is designed to meet today's demands on development speed and flexibility. It was developed to be used as a OEM component in users systems1, but can also be utilized for learning purposes or prototype development. Its heart is a 24,192 logic cells Virtex-4<sup>™</sup> FPGA. 93 FPGA I/O balls and the local-bus clock are routed to the Plug-In-board (PIB) slot, which is wired to a 78-pin HD-SUB I/O connector as well. Plug-In boards can be standard boards from CESYS, a board carrying the functionality defined by you, or your own board. The standard Plug-In board that comes with 0, provides 64 signals with 5 Volt tolerant buffers. Plug-In boards can carry various interfaces like ADC, DAC, TTL Level I/O, RS232, RS485, LVDS, Camera Link or user-defined interface standards. In addition to the Virtex-4<sup>™</sup> FPGA, there is a 512 MByte SODIMM DDR2 memory module and a bus-master capable PCI Express bridge-chip on board. Using a PCIe bridge chip instead of implementing the PCIe interface inside the FPGA makes the board much easier to use and allows FPGA-configuration at any time without the need to reboot the PC or re-enumerate the PCIe board. VHDL and C++ sample code that demonstrates how to exchange data between the FPGA and the PC comes with the 0. Users who wish to develop their own PCIe-boards based on the PCIeV4Base can purchase the PCIeV4Base source code package which contains the schematics of the board as well all all sources (API, DLL). Please contact CESYS for details.

# Feature list

| Form factor              | standard short size PCIe board                                                                    |
|--------------------------|---------------------------------------------------------------------------------------------------|
| XILINXTM Virtex-4TM FPGA | XC4VLX25-10FFG668C                                                                                |
| PCIe bridge              | PEX8311                                                                                           |
| Memory                   | 512 MB DDR2 SODIMM module                                                                         |
| JTAG Interface           | connects to XILINXTM Download cable                                                               |
| FPGA Configuration       | using PCIe or JTAG                                                                                |
| External connector       | SUB-D, gender: female, 78-pin                                                                     |
| Expansion board slot     | standard CESYS PIB Format                                                                         |
| Leds                     | 4 green and 4 yellow leds                                                                         |
| Clocks                   | 3 on board, additional PIB user clocks possible                                                   |
| Example code             | sample VHDL and C++ code can be used as a starting point for user's designs. Included in delivery |

The standard delivery, PCIeV4Base, includes:

- PCIeV4Base board
- 512 MByte DDR2 memory module (SODIMM)
- PIB64IO Plug-In-board

- 78-pin SUB-D connector with housing
- One CD-ROM containing the user's manual (English), drivers, libraries, tools and example source code.

All parts are ROHS compliant.

Single boards and very low quantities can be ordered in this configuration only. OEM customers may have a different scope of supply based on individual agreements. If you have questions, please call.

# Hardware



Figure 1: PCIeV4Base block diagram

# Virtex-4 FPGA

#### XC4VLX25-10FFG668C FPGA features:

| Configurable Logic Blocks (CLBs): | 96 x 26                |
|-----------------------------------|------------------------|
| Logic Cells                       | 24,192                 |
| Max Distributed Ram               | 168 (kBit)             |
| XtremeDSP Slices                  | 48 <sup>1</sup>        |
| Block RAM                         | 72 blocks (1,296 kBit) |
| DCMs                              | 8                      |
| PMCDs                             | 4                      |

For details of the Virtex-4<sup>™</sup> FPGA device, please look at the data sheet at: <u>http://direct.xilinx.com/bvdocs/publications/ds112.pdf</u>

1 Each XtremeDSP slice contains one 18 x 18 multiplier, an adder, and an accumulator

# SODIMM Memory module

A SODIMM slot populated with a MIG<sup>2</sup> compatible 512 MByte DDR2 memory module is available on board. All examples that come with the board require this reference module. Users may replace the module, but also have to rewrite the FPGA code to support other sizes and parameters. CESYS recommends to keep the default module.

# PCI Express interface

To implement a PCI Express interface on a FPGA board, there are two possibilities. The PCI Express interface can be implemented in the FPGA or an additional PCIe bridge chip can be used. The second was preferred for the *PCIeV4BASE* board. Although this makes the costs per board a bit higher, it has some advantages for low to medium volume products like the *PCIeV4BASE*: the local bus of the bridge is easier to handle than a PCIe core, no PCIe core must be purchased and last but not least - the PCIe bridge chip is well tested and will likely run fine on current and future computer systems.

<sup>2</sup> Memory Interface Generator

# **CESYS PIB** slot

Like some other CESYS boards, the *PCIeV4BASE* board has a Plug-In-Board slot. The PIB slot consists of two 100-pin connectors. One is wired to some FPGA I/O balls, the other is wired to an external connector. The default PIB that comes with the *PCIeV4BASE* board has 5 Volt tolerant fast buffers and 5 Volt fast drivers for 64 signals. Please check the PIB64IO PIB documentation for the pin out and other details.



Figure 2: PIB outline drawing and dimensions

# Board size

The PCIeV4BASE board has Standard PCI-Express half- length card dimensions.



Figure 3: PCIeV4BASE outline drawing and dimensions

# **Connectors and FPGA pinout**



Figure 4: PCIeV4BASE connector diagram

## **Clock signals**

The user can choose between various clock signals available on the *PCIeV4BASE* board. Via the zero delay buffer CY2305 the 66 MHz clock oscillator output signal is distributed to XCV4LX25, PEX8311 and the Plug-In board slot. This clock is used as CCLK for the configuration of the FPGA through the PCIe interface and is usable as system clock for user designs after startup. The same clock also serves as local bus clock for the local bus interface between FPGA and PLX PCIe bus bridge PEX8311. Through an external PLL circuit the 200 MHz differential clock CLK200/CLK200B is provided. This clock can be used as reference clock for the 'idelay' option using the memory interface generator from XIILINX. The differential clock DDR\_PLLCLK / DDR\_PLLCLKB is generated independently by another PLL circuit. By default DDR\_PLLCLK is used as SYS\_CLK for the memory interface generator. The default clock rate for DDR\_PLLCLK is 200 MHz. Through configuration pins routed to the FPGA the user can optionally set this frequency to other values, for example 50 MHz or 100 MHz. For further information about DDR\_PLLCLK configuration see section "DDR PLLCLK".

| Clock signals  |               |              |          |                                       |  |
|----------------|---------------|--------------|----------|---------------------------------------|--|
| Signal name    | Clock rate    | I/O Standard | FPGA I/O | Comment                               |  |
| CCLK_66MHz     | 66 MHz        | LVCMOS33     | G14      | Configuration clock for<br>FPGA       |  |
| PIBCLK_66MHz   | 66 MHz        | LVCMOS33     |          | Clock available at PIB slot clock pin |  |
| FPGACLK_66MHz  | 66 MHz        | LVCMOS33     | AD12     | System clock for FPGA designs         |  |
| PLX_LCLK_66MHz | 66 MHz        | LVCMOS33     |          | PLX local bus clock                   |  |
| CLK200         | 200 MHz       | LVPECL25     | C15      | Reference clock for<br>'idelay'       |  |
| CLK200B        |               | LVPECL25     | C14      | Complementary clock<br>signal         |  |
| DDR_PLLCLK     | 200 MHz, adj. | LVPECL25     | B15      | DDR2 SDRAM clock                      |  |
| DDR_PLLCLKB    |               | LVPECL25     | B14      | Complementary clock signal            |  |

## DDR PLLCLK

The *PCIeV4BASE* board provides one configurable PLL clock through the use of the clock multiplier CDCF5801A (<u>http://focus.ti.com/docs/prod/folders/print/cdcf5801a.html</u>) from Texas Instruments. By default DDR\_PLLCLK is used as SYS\_CLK for the DDR2 IP core generated with the *memory interface generator* v1.7 provided by XILINX<sup>TM</sup>. The user should only change this clock with no DDR2 SODIMM memory module inserted or if SYS\_CLK is provided by other means.

| DDR PLLCLK Interface |              |          |                                                                                                               |  |  |  |  |
|----------------------|--------------|----------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Signal name          | I/O Standard | FPGA I/O | Comment                                                                                                       |  |  |  |  |
| DDR_PLLCLK           | LVPECL25     | B15      | PLL clock output signal                                                                                       |  |  |  |  |
| DDR_PLLCLKB          | LVPECL25     | B14      | Complementary clock signal                                                                                    |  |  |  |  |
| DDR_PLL_P0           | LVCMOS33     | C4       | Mode control input<br>0 – Normal operation (default)<br>1 – High-Z outputs and special settings               |  |  |  |  |
| DDR_PLL_P1           | LVCMOS33     | D4       | Post divider control input<br>P[1:2] = 11: div2 (default)<br>P[1:2] = 10: div4                                |  |  |  |  |
| DDR_PLL_P2           | LVCMOS33     | D1       | P[1:2] = 01: div8                                                                                             |  |  |  |  |
| DDR_PLL_MULT0        | LVCMOS33     | D3       | PLL multiplication factor select<br>MULT[0:1] = 10: x16<br>MULT[0:1] = 11: x8 (default)<br>MULT[0:1] = 00: x4 |  |  |  |  |

| DDR PLLCLK Interface     |              |          |                                                   |  |  |
|--------------------------|--------------|----------|---------------------------------------------------|--|--|
| Signal name              | I/O Standard | FPGA I/O | Comment                                           |  |  |
| DDR_PLL_MULT1            | LVCMOS33     | D2       | MULT[0:1] = 01: x2                                |  |  |
| FPGA_CLKPLL <sup>3</sup> | LVCMOS33     | AE10     | Optional PLL clock input driven by<br>FPGA        |  |  |
| FPGA_CLKPLL_FB           | LVCMOS33     | AD17     | Optional feedback for FPGA driven PLL clock input |  |  |

By default the PLL clock input signal is generated via a 50 MHz clock oscillator. Optionally the FPGA can source the PLL clock input. To enable clock sourcing by the FPGA it is necessary to remove resistor R123 and insert R120 and R121. Standard 0603 resistors in the range of 22 – 50 Ohms should be adequate.

#### SODIMM socket

The *PCIeV4BASE* board provides one standard DDR2 SODIMM module socket for use with 1,8V DDR2 SODIMM modules. Due to the various configurations existing for DDR2 modules it cannot be guaranteed that a specific module is supported. The user has to check the table "Slot1 SODIMM Socket", whether all I/O needed by the memory module are available on Slot 1.

| Slot 1 | SODIMM Socket |               |     |             |               |  |
|--------|---------------|---------------|-----|-------------|---------------|--|
| Pin    | Signal name   | FPGA I/O Ball | Pin | Signal name | FPGA I/O Ball |  |
| 1      | 0,9 Volt      |               | 2   | GND         |               |  |
| 3      | GND           |               | 4   | DQ4         | W21           |  |
| 5      | DQ 0          | V21           | 6   | DQ5         | W22           |  |
| 7      | DQ 1          | V22           | 8   | GND         |               |  |
| 9      | GND           |               | 10  | DM0         | V20           |  |
| 11     | DQS0#         | Y24           | 12  | GND         |               |  |
| 13     | DQS0          | AA24          | 14  | DQ6         | W23           |  |
| 15     | GND           |               | 16  | DQ7         | W20           |  |
| 17     | DQ2           | W25           | 18  | GND         |               |  |
| 19     | DQ3           | W26           | 20  | DQ12        | AB26          |  |
| 21     | GND           |               | 22  | DQ13        | AA26          |  |
| 23     | DQ8           | Y25           | 24  | GND         |               |  |

3 To enable DDR\_PLLCLK clock sourcing by the FPGA is an expert option and should only be used by experienced users for whom it is normal to do SMD soldering jobs. Warranty will be lost.

| Slot 1 | SODIMM Socket |               |     |             |               |
|--------|---------------|---------------|-----|-------------|---------------|
| Pin    | Signal name   | FPGA I/O Ball | Pin | Signal name | FPGA I/O Ball |
| 25     | DQ9           | Y26           | 26  | DM1         | Y22           |
| 27     | GND           |               | 28  | GND         |               |
| 29     | DQS1#         | AC26          | 30  | CK0         | AA19          |
| 31     | DQS1          | AC25          | 32  | CK0#        | AA20          |
| 33     | GND           |               | 34  | GND         |               |
| 35     | DQ10          | AB24          | 36  | DQ14        | AD25          |
| 37     | DQ11          | AB25          | 38  | DQ15        | AD26          |
| 39     | GND           |               | 40  | GND         |               |
| 41     | GND           |               | 42  | GND         |               |
| 43     | DQ16          | AC22          | 44  | DQ20        | AD22          |
| 45     | DQ17          | AB22          | 46  | DQ21        | AD23          |
| 47     | GND           |               | 48  | GND         |               |
| 49     | DQS2#         | AB21          | 50  | NC          |               |
| 51     | DQS2          | AC21          | 52  | DM2         | AF19          |
| 53     | GND           |               | 54  | GND         |               |
| 55     | DQ18          | AB23          | 56  | DQ22        | AC23          |
| 57     | DQ19          | AA23          | 58  | DQ23        | AC24          |
| 59     | GND           |               | 60  | GND         |               |
| 61     | DQ24          | AF20          | 62  | DQ28        | AE23          |
| 63     | DQ25          | Y19           | 64  | DQ29        | Y20           |
| 65     | GND           |               | 66  | GND         |               |
| 67     | DM3           | AF24          | 68  | DQS3#       | AC19          |
| 69     | NC            |               | 70  | DQS3        | AD19          |
| 71     | GND           |               | 72  | GND         |               |
| 73     | DQ26          | W19           | 74  | DQ30        | AA18          |
| 75     | DQ27          | AF23          | 76  | DQ31        | Y18           |
| 77     | GND           |               | 78  | GND         |               |
| 79     | CKE0          | K2            | 80  | CKE1        | L4            |
| 81     | 1,8 Volt      |               | 82  | 1,8 Volt    |               |
| 83     | NC            |               | 84  | NC/A15      | M1            |
| 85     | NC/BA2        | AF9           | 86  | NC/A14      | K1            |
| 87     | 1,8 Volt      |               | 88  | 1,8 Volt    |               |
| 89     | A12           | AE24          | 90  | A11         | AB20          |
| 91     | A9            | AB18          | 92  | A7          | AF22          |

| Slot 1 | SODIMM Socket |               |     |             |               |
|--------|---------------|---------------|-----|-------------|---------------|
| Pin    | Signal name   | FPGA I/O Ball | Pin | Signal name | FPGA I/O Ball |
| 93     | A8            | AF21          | 94  | A6          | AF18          |
| 95     | 1,8 Volt      |               | 96  | 1,8 Volt    |               |
| 97     | A5            | AE18          | 98  | A4          | AE21          |
| 99     | A3            | AD21          | 100 | A2          | J7            |
| 101    | A1            | J6            | 102 | A0          | J5            |
| 103    | 1,8 Volt      |               | 104 | 1,8 Volt    |               |
| 105    | A10           | AC18          | 106 | BA1         | J4            |
| 107    | BA0           | K7            | 108 | RAS#        | K6            |
| 109    | WE#           | L7            | 110 | CS0#        | L6            |
| 111    | 1,8 Volt      |               | 112 | 1,8 Volt    |               |
| 113    | CAS#          | J2            | 114 | ODT0        | K4            |
| 115    | CS1#          | K5            | 116 | NC/A13      | L1            |
| 117    | 1,8 Volt      |               | 118 | 1,8 Volt    |               |
| 119    | ODT1          | K3            | 120 | NC          |               |
| 121    | GND           |               | 122 | GND         |               |
| 123    | DQ32          | W2            | 124 | DQ36        | W7            |
| 125    | DQ33          | W1            | 126 | DQ37        | V7            |
| 127    | GND           |               | 128 | GND         |               |
| 129    | DQS4#         | Y3            | 130 | DM4         | W5            |
| 131    | DQS4          | Y4            | 132 | GND         |               |
| 133    | GND           |               | 134 | DQ38        | W4            |
| 135    | DQ34          | V6            | 136 | DQ39        | W6            |
| 137    | DQ35          | V5            | 138 | GND         |               |
| 139    | GND           |               | 140 | DQ44        | AB1           |
| 141    | DQ40          | Y2            | 142 | DQ45        | AA1           |
| 143    | DQ41          | Y1            | 144 | GND         |               |
| 145    | GND           |               | 146 | DQS5#       | Y5            |
| 147    | DM5           | AB3           | 148 | DQS5        | Y6            |
| 149    | GND           |               | 150 | GND         |               |
| 151    | DQ42          | AA4           | 152 | DQ46        | AC4           |
| 153    | DQ43          | AA3           | 154 | DQ47        | AB4           |
| 155    | GND           |               | 156 | GND         |               |
| 157    | DQ48          | AC5           | 158 | DQ52        | AF3           |
| 159    | DQ49          | AB5           | 160 | DQ53        | AE3           |

| Slot 1 | SODIMM Socket |               |     |             |               |  |
|--------|---------------|---------------|-----|-------------|---------------|--|
| Pin    | Signal name   | FPGA I/O Ball | Pin | Signal name | FPGA I/O Ball |  |
| 161    | GND           |               | 162 | GND         |               |  |
| 163    | NC            |               | 164 | CK1         | Y17           |  |
| 165    | GND           |               | 166 | CK1#        | AA17          |  |
| 167    | DQS6#         | AB6           | 168 | GND         |               |  |
| 169    | DQS6          | AC6           | 170 | DM6         | AF4           |  |
| 171    | GND           |               | 172 | GND         |               |  |
| 173    | DQ50          | AC2           | 174 | DQ54        | AD2           |  |
| 175    | DQ51          | AC1           | 176 | DQ55        | AD1           |  |
| 177    | GND           |               | 178 | GND         |               |  |
| 179    | DQ56          | AE4           | 180 | DQ60        | AF5           |  |
| 181    | DQ57          | AD3           | 182 | DQ61        | AA7           |  |
| 183    | GND           |               | 184 | GND         |               |  |
| 185    | DM7           | AD5           | 186 | DQS7#       | AF7           |  |
| 187    | GND           |               | 188 | DQS7        | AF8           |  |
| 189    | DQ58          | AC3           | 190 | GND         |               |  |
| 191    | DQ59          | AF6           | 192 | DQ62        | AA9           |  |
| 193    | GND           |               | 194 | DQ63        | Y9            |  |
| 195    | SDA           | AF10          | 196 | GND         |               |  |
| 197    | SCL           | AF11          | 198 | SA0         | AE14          |  |
| 199    | 3,3 Volt      |               | 200 | SA1         | AE13          |  |

By default the DDR2 SODIMM module MT8HTF6464HDY -512MB from Micron is used. The specific memory interface for the Micron MT8HTF6464HDY – 512MB is described in table "DDR2 – Memory Interface for Micron MT8HTF6464HDY – 512MB" for reference. Further information on using this DDR2 SODIMM can be found in chapter D, section "Interfacing DDR2 memory".

| DDR2 – Memory Interface for Micron MT8HTF6464HDY – 512MB |               |          |                                  |  |  |
|----------------------------------------------------------|---------------|----------|----------------------------------|--|--|
| Signal name                                              | I/O Standard  | FPGA I/O | Comment                          |  |  |
| DQ 0                                                     | SSTL18_II_DCI | V21      | Data I/O: Bidirectional data bus |  |  |
| DQ 1                                                     | SSTL18_II_DCI | V22      | Data I/O: Bidirectional data bus |  |  |
| DQ 2                                                     | SSTL18_II_DCI | W25      | Data I/O: Bidirectional data bus |  |  |
| DQ 3                                                     | SSTL18_II_DCI | W26      | Data I/O: Bidirectional data bus |  |  |
| DQ 4                                                     | SSTL18_II_DCI | W21      | Data I/O: Bidirectional data bus |  |  |

| DDR2 – Memory Interface for Micron MT8HTF6464HDY – 512MB |               |          |                                  |  |  |
|----------------------------------------------------------|---------------|----------|----------------------------------|--|--|
| Signal name                                              | I/O Standard  | FPGA I/O | Comment                          |  |  |
| DQ 5                                                     | SSTL18_II_DCI | W22      | Data I/O: Bidirectional data bus |  |  |
| DQ 6                                                     | SSTL18_II_DCI | W23      | Data I/O: Bidirectional data bus |  |  |
| DQ 7                                                     | SSTL18_II_DCI | W20      | Data I/O: Bidirectional data bus |  |  |
| DQ 8                                                     | SSTL18_II_DCI | Y25      | Data I/O: Bidirectional data bus |  |  |
| DQ 9                                                     | SSTL18_II_DCI | Y26      | Data I/O: Bidirectional data bus |  |  |
| DQ 10                                                    | SSTL18_II_DCI | AB24     | Data I/O: Bidirectional data bus |  |  |
| DQ 11                                                    | SSTL18_II_DCI | AB25     | Data I/O: Bidirectional data bus |  |  |
| DQ 12                                                    | SSTL18_II_DCI | AB26     | Data I/O: Bidirectional data bus |  |  |
| DQ 13                                                    | SSTL18_II_DCI | AA26     | Data I/O: Bidirectional data bus |  |  |
| DQ 14                                                    | SSTL18_II_DCI | AD25     | Data I/O: Bidirectional data bus |  |  |
| DQ 15                                                    | SSTL18_II_DCI | AD26     | Data I/O: Bidirectional data bus |  |  |
| DQ 16                                                    | SSTL18_II_DCI | AC22     | Data I/O: Bidirectional data bus |  |  |
| DQ 17                                                    | SSTL18_II_DCI | AB22     | Data I/O: Bidirectional data bus |  |  |
| DQ 18                                                    | SSTL18_II_DCI | AB23     | Data I/O: Bidirectional data bus |  |  |
| DQ 19                                                    | SSTL18_II_DCI | AA23     | Data I/O: Bidirectional data bus |  |  |
| DQ 20                                                    | SSTL18_II_DCI | AD22     | Data I/O: Bidirectional data bus |  |  |
| DQ 21                                                    | SSTL18_II_DCI | AD23     | Data I/O: Bidirectional data bus |  |  |
| DQ 22                                                    | SSTL18_II_DCI | AC23     | Data I/O: Bidirectional data bus |  |  |
| DQ 23                                                    | SSTL18_II_DCI | AC24     | Data I/O: Bidirectional data bus |  |  |
| DQ 24                                                    | SSTL18_II_DCI | AF20     | Data I/O: Bidirectional data bus |  |  |
| DQ 25                                                    | SSTL18_II_DCI | Y19      | Data I/O: Bidirectional data bus |  |  |
| DQ 26                                                    | SSTL18_II_DCI | W19      | Data I/O: Bidirectional data bus |  |  |
| DQ 27                                                    | SSTL18_II_DCI | AF23     | Data I/O: Bidirectional data bus |  |  |
| DQ 28                                                    | SSTL18_II_DCI | AE23     | Data I/O: Bidirectional data bus |  |  |
| DQ 29                                                    | SSTL18_II_DCI | Y20      | Data I/O: Bidirectional data bus |  |  |
| DQ 30                                                    | SSTL18_II_DCI | AA18     | Data I/O: Bidirectional data bus |  |  |
| DQ 31                                                    | SSTL18_II_DCI | Y18      | Data I/O: Bidirectional data bus |  |  |
| DQ 32                                                    | SSTL18_II_DCI | W2       | Data I/O: Bidirectional data bus |  |  |
| DQ 33                                                    | SSTL18_II_DCI | W1       | Data I/O: Bidirectional data bus |  |  |
| DQ 34                                                    | SSTL18_II_DCI | V6       | Data I/O: Bidirectional data bus |  |  |
| DQ 35                                                    | SSTL18_II_DCI | V5       | Data I/O: Bidirectional data bus |  |  |
| DQ 36                                                    | SSTL18_II_DCI | W7       | Data I/O: Bidirectional data bus |  |  |
| DQ 37                                                    | SSTL18_II_DCI | V7       | Data I/O: Bidirectional data bus |  |  |
| DQ 38                                                    | SSTL18_II_DCI | W4       | Data I/O: Bidirectional data bus |  |  |

| DDR2 – Memory Interface for Micron MT8HTF6464HDY – 512MB |               |          |                                  |  |  |
|----------------------------------------------------------|---------------|----------|----------------------------------|--|--|
| Signal name                                              | I/O Standard  | FPGA I/O | Comment                          |  |  |
| DQ 39                                                    | SSTL18_II_DCI | W6       | Data I/O: Bidirectional data bus |  |  |
| DQ 40                                                    | SSTL18_II_DCI | Y2       | Data I/O: Bidirectional data bus |  |  |
| DQ 41                                                    | SSTL18_II_DCI | Y1       | Data I/O: Bidirectional data bus |  |  |
| DQ 42                                                    | SSTL18_II_DCI | AA4      | Data I/O: Bidirectional data bus |  |  |
| DQ 43                                                    | SSTL18_II_DCI | AA3      | Data I/O: Bidirectional data bus |  |  |
| DQ 44                                                    | SSTL18_II_DCI | AB1      | Data I/O: Bidirectional data bus |  |  |
| DQ 45                                                    | SSTL18_II_DCI | AA1      | Data I/O: Bidirectional data bus |  |  |
| DQ 46                                                    | SSTL18_II_DCI | AC4      | Data I/O: Bidirectional data bus |  |  |
| DQ 47                                                    | SSTL18_II_DCI | AB4      | Data I/O: Bidirectional data bus |  |  |
| DQ 48                                                    | SSTL18_II_DCI | AC5      | Data I/O: Bidirectional data bus |  |  |
| DQ 49                                                    | SSTL18_II_DCI | AB5      | Data I/O: Bidirectional data bus |  |  |
| DQ 50                                                    | SSTL18_II_DCI | AC2      | Data I/O: Bidirectional data bus |  |  |
| DQ 51                                                    | SSTL18_II_DCI | AC1      | Data I/O: Bidirectional data bus |  |  |
| DQ 52                                                    | SSTL18_II_DCI | AF3      | Data I/O: Bidirectional data bus |  |  |
| DQ 53                                                    | SSTL18_II_DCI | AE3      | Data I/O: Bidirectional data bus |  |  |
| DQ 54                                                    | SSTL18_II_DCI | AD2      | Data I/O: Bidirectional data bus |  |  |
| DQ 55                                                    | SSTL18_II_DCI | AD1      | Data I/O: Bidirectional data bus |  |  |
| DQ 56                                                    | SSTL18_II_DCI | AE4      | Data I/O: Bidirectional data bus |  |  |
| DQ 57                                                    | SSTL18_II_DCI | AD3      | Data I/O: Bidirectional data bus |  |  |
| DQ 58                                                    | SSTL18_II_DCI | AC3      | Data I/O: Bidirectional data bus |  |  |
| DQ 59                                                    | SSTL18_II_DCI | AF6      | Data I/O: Bidirectional data bus |  |  |
| DQ 60                                                    | SSTL18_II_DCI | AF5      | Data I/O: Bidirectional data bus |  |  |
| DQ 61                                                    | SSTL18_II_DCI | AA7      | Data I/O: Bidirectional data bus |  |  |
| DQ 62                                                    | SSTL18_II_DCI | AA9      | Data I/O: Bidirectional data bus |  |  |
| DQ 63                                                    | SSTL18_II_DCI | Y9       | Data I/O: Bidirectional data bus |  |  |
| A 0                                                      | SSTL18_I_DCI  | J5       | Address input 0                  |  |  |
| A 1                                                      | SSTL18_I_DCI  | J6       | Address input 1                  |  |  |
| A 2                                                      | SSTL18_I_DCI  | J7       | Address input 2                  |  |  |
| A 3                                                      | SSTL18_I_DCI  | AD21     | Address input 3                  |  |  |
| A 4                                                      | SSTL18_I_DCI  | AE21     | Address input 4                  |  |  |
| A 5                                                      | SSTL18_I_DCI  | AE18     | Address input 5                  |  |  |
| A 6                                                      | SSTL18_I_DCI  | AF18     | Address input 6                  |  |  |
| Α7                                                       | SSTL18_I_DCI  | AF22     | Address input 7                  |  |  |
| A 8                                                      | SSTL18_I_DCI  | AF21     | Address input 8                  |  |  |

| DDR2 – Memory Interface for Micron MT8HTF6464HDY – 512MB |                        |          |                             |  |  |
|----------------------------------------------------------|------------------------|----------|-----------------------------|--|--|
| Signal name                                              | I/O Standard           | FPGA I/O | Comment                     |  |  |
| A 9                                                      | SSTL18_I_DCI           | AB18     | Address input 9             |  |  |
| A 10                                                     | SSTL18_I_DCI           | AC18     | Address input 10            |  |  |
| A 11                                                     | SSTL18_I_DCI           | AB20     | Address input 11            |  |  |
| A 12                                                     | SSTL18_I_DCI           | AE24     | Address input 12            |  |  |
| BA 0                                                     | SSTL18_I_DCI           | K7       | Bank address input 0        |  |  |
| BA 1                                                     | SSTL18_I_DCI           | J4       | Bank address input 1        |  |  |
| RAS#                                                     | SSTL18_I_DCI           | K6       | Row address strobe          |  |  |
| CAS#                                                     | SSTL18_I_DCI           | J2       | Column address strobe       |  |  |
| WE#                                                      | SSTL18_I_DCI           | L7       | Write enable                |  |  |
| CS# 0                                                    | SSTL18_I_DCI           | L6       | Chip select 0               |  |  |
| CS# 1                                                    | SSTL18_I_DCI           | K5       | Chip select 1               |  |  |
| ODT 0                                                    | SSTL18_I_DCI           | K4       | On-die termination 0        |  |  |
| ODT 1                                                    | SSTL18_I_DCI           | K3       | On-die termination 1        |  |  |
| CKE 0                                                    | SSTL18_I_DCI           | K2       | Clock enable 0              |  |  |
| CKE 1                                                    | SSTL18_I_DCI           | L4       | Clock enable 1              |  |  |
| DM 0                                                     | SSTL18_II_DCI          | V20      | Input data mask 0           |  |  |
| DM 1                                                     | SSTL18_II_DCI          | Y22      | Input data mask 1           |  |  |
| DM 2                                                     | SSTL18_II_DCI          | AF19     | Input data mask 2           |  |  |
| DM 3                                                     | SSTL18_II_DCI          | AF24     | Input data mask 3           |  |  |
| DM 4                                                     | SSTL18_II_DCI          | W5       | Input data mask 4           |  |  |
| DM 5                                                     | SSTL18_II_DCI          | AB3      | Input data mask 5           |  |  |
| DM 6                                                     | SSTL18_II_DCI          | AF4      | Input data mask 6           |  |  |
| DM 7                                                     | SSTL18_II_DCI          | AD5      | Input data mask 7           |  |  |
| DQS 0                                                    | DIFF_SSTL18_II_D<br>CI | AA24     | Data strobe 0               |  |  |
| DQS# 0                                                   | DIFF_SSTL18_II_D<br>CI | Y24      | Complementary Data strobe 0 |  |  |
| DQS 1                                                    | DIFF_SSTL18_II_D<br>CI | AC25     | Data strobe 1               |  |  |
| DQS# 1                                                   | DIFF_SSTL18_II_D<br>CI | AC26     | Complementary Data strobe 1 |  |  |
| DQS 2                                                    | DIFF_SSTL18_II_D<br>CI | AC21     | Data strobe 2               |  |  |
| DQS# 2                                                   | DIFF_SSTL18_II_D<br>CI | AB21     | Complementary Data strobe 2 |  |  |
| DQS 3                                                    | DIFF_SSTL18_II_D       | AD19     | Data strobe 3               |  |  |

| DDR2 – Memory Interface for Micron MT8HTF6464HDY – 512MB |                        |          |                                  |  |  |  |
|----------------------------------------------------------|------------------------|----------|----------------------------------|--|--|--|
| Signal name                                              | I/O Standard           | FPGA I/O | Comment                          |  |  |  |
|                                                          | CI                     |          |                                  |  |  |  |
| DQS# 3                                                   | DIFF_SSTL18_II_D<br>CI | AC19     | Complementary Data strobe 3      |  |  |  |
| DQS 4                                                    | DIFF_SSTL18_II_D<br>CI | Y4       | Data strobe 4                    |  |  |  |
| DQS# 4                                                   | DIFF_SSTL18_II_D<br>CI | Y3       | Complementary Data strobe 4      |  |  |  |
| DQS 5                                                    | DIFF_SSTL18_II_D<br>CI | Y6       | Data strobe 5                    |  |  |  |
| DQS# 5                                                   | DIFF_SSTL18_II_D<br>CI | Y5       | Complementary Data strobe 5      |  |  |  |
| DQS 6                                                    | DIFF_SSTL18_II_D<br>CI | AC6      | Data strobe 6                    |  |  |  |
| DQS# 6                                                   | DIFF_SSTL18_II_D<br>CI | AB6      | Complementary Data strobe 6      |  |  |  |
| DQS 7                                                    | DIFF_SSTL18_II_D<br>CI | AF8      | Data strobe 7                    |  |  |  |
| DQS# 7                                                   | DIFF_SSTL18_II_D<br>CI | AF7      | Complementary Data strobe 7      |  |  |  |
| CK 0                                                     | DIFF_SSTL18_II_D<br>CI | AA19     | Clock 0                          |  |  |  |
| CK# 0                                                    | DIFF_SSTL18_II_D<br>CI | AA20     | Complementary Clock 0            |  |  |  |
| CK 1                                                     | DIFF_SSTL18_II_D<br>CI | Y17      | Clock 1                          |  |  |  |
| CK# 1                                                    | DIFF_SSTL18_II_D<br>CI | AA17     | Complementary Clock 1            |  |  |  |
| SCL                                                      | LVCMOS33               | AF11     | Serial clock for presence-detect |  |  |  |
| SDA                                                      | LVCMOS33               | AF10     | Serial presence-detect data      |  |  |  |
| SA 0                                                     | LVCMOS33               | AE14     | Presence-detect address input 0  |  |  |  |
| SA 1                                                     | LVCMOS33               | AE13     | Presence-detect address input 1  |  |  |  |

### PIB signals and SUB-D connector

CON4 and CON3 serve as the Plug-In board socket. Through CON4 93 FPGA I/O are accessible. The I/O standard to be used is LVCMOS33. Pins marked as CC are connected to lower capacitance clock capable IO which lack the LVDS driver to reduce parasitic capacitance and therefore are the perfect choice for very high clock rates. For further information about CC and LC IO the user is encouraged to check the appropriate user guides provided by XILINX<sup>™</sup>. On Pin 44 the 66 MHz local bus clock is available. The complete pinout is provided in table "CON4 Plug-In board to FPGA I/O-pin connector".

| CON | 4 Plug-In board | Plug-In board to FPGA I/O-pin connector |     |             |               |  |  |
|-----|-----------------|-----------------------------------------|-----|-------------|---------------|--|--|
| Pin | Signal name     | FPGA I/O Ball                           | Pin | Signal name | FPGA I/O Ball |  |  |
| 1   | PIB_IO0         | AB17                                    | 100 | PIB_IO92    | V25           |  |  |
| 2   | PIB_IO1         | U21                                     | 99  | PIB_IO91    | V26           |  |  |
| 3   | PIB_IO2         | U22                                     | 98  | PIB_IO90    | U26           |  |  |
| 4   | GND             |                                         | 97  | PIB_IO89    | T26           |  |  |
| 5   | PIB_IO3         | T19                                     | 96  | PIB_IO88    | U24           |  |  |
| 6   | PIB_IO4         | U20                                     | 95  | PIB_IO87    | U25           |  |  |
| 7   | PIB_IO5         | R23                                     | 94  | PIB_IO86    | V23           |  |  |
| 8   | PIB_IO6         | R24                                     | 93  | PIB_IO85    | U23           |  |  |
| 9   | PIB_IO7         | R21                                     | 92  | PIB_IO84    | T20           |  |  |
| 10  | PIB_IO8         | R22                                     | 91  | PIB_IO83    | T21           |  |  |
| 11  | PIB_IO9         | T23 (LC⁴)                               | 90  | PIB_IO82    | R25           |  |  |
| 12  | PIB_IO10        | T24 (CC <sup>5</sup> )                  | 89  | PIB_IO81    | R26           |  |  |
| 13  | PIB_IO11        | R20 (CC)                                | 88  | PIB_IO80    | P24           |  |  |
| 14  | PIB_IO12        | R19 (LC)                                | 87  | PIB_IO79    | P25           |  |  |
| 15  | PIB_IO13        | P19                                     | 86  | PIB_IO78    | P22           |  |  |
| 16  | PIB_IO14        | P20                                     | 85  | PIB_IO77    | P23           |  |  |
| 17  | PIB_IO15        | N19 (LC)                                | 84  | PIB_IO76    | N25           |  |  |
| 18  | PIB_IO16        | M19 (CC)                                | 83  | PIB_IO75    | N24           |  |  |
| 19  | PIB_IO17        | K26 (CC)                                | 82  | PIB_IO74    | N23           |  |  |
| 20  | PIB_IO18        | K25 (LC)                                | 81  | PIB_IO73    | N22           |  |  |
| 21  | PIB_IO19        | M23                                     | 80  | PIB_IO72    | N21           |  |  |
| 22  | PIB_IO20        | M22                                     | 79  | PIB_IO71    | N20           |  |  |
| 23  | GND             |                                         | 78  | PIB_IO70    | M26           |  |  |

4 Lower capacitance pin

5 Lower capacitance clock pin

| CON | 4 Plug-In board | Plug-In board to FPGA I/O-pin connector |     |             |               |  |  |
|-----|-----------------|-----------------------------------------|-----|-------------|---------------|--|--|
| Pin | Signal name     | FPGA I/O Ball                           | Pin | Signal name | FPGA I/O Ball |  |  |
| 24  | PIB_IO21        | M21                                     | 77  | PIB_IO69    | L26           |  |  |
| 25  | PIB_IO22        | M20                                     | 76  | PIB_IO68    | M25           |  |  |
| 26  | PIB_IO23        | L21                                     | 75  | PIB_IO67    | M24           |  |  |
| 27  | PIB_IO24        | L20                                     | 74  | PIB_IO66    | L24           |  |  |
| 28  | PIB_IO25        | L19                                     | 73  | PIB_IO65    | L23           |  |  |
| 29  | PIB_IO26        | K20                                     | 72  | PIB_IO64    | K24           |  |  |
| 30  | PIB_IO27        | K22                                     | 71  | PIB_IO63    | K23           |  |  |
| 31  | PIB_IO28        | K21                                     | 70  | PIB_IO62    | J26           |  |  |
| 32  | PIB_IO29        | J21                                     | 69  | PIB_IO61    | J25           |  |  |
| 33  | PIB_IO30        | J20                                     | 68  | PIB_IO60    | J23           |  |  |
| 34  | PIB_IO31        | F24 (CC)                                | 67  | PIB_IO59    | J22           |  |  |
| 35  | PIB_IO32        | F23 (LC)                                | 66  | PIB_IO58    | H26           |  |  |
| 36  | PIB_IO33        | E23                                     | 65  | PIB_IO57    | H25           |  |  |
| 37  | PIB_IO34        | E22                                     | 64  | PIB_IO56    | G26           |  |  |
| 38  | PIB_IO35        | D24                                     | 63  | PIB_IO55    | G25           |  |  |
| 39  | PIB_IO36        | C24                                     | 62  | PIB_IO54    | H24           |  |  |
| 40  | PIB_IO37        | D23                                     | 61  | PIB_IO53    | H23           |  |  |
| 41  | PIB_IO38        | C23                                     | 60  | PIB_IO52    | G24           |  |  |
| 42  | PIB_IO39        | A21                                     | 59  | PIB_IO51    | G23           |  |  |
| 43  | PIB_IO40        | A22                                     | 58  | PIB_IO50    | F26           |  |  |
| 44  | PIBCLK (66MHz)  |                                         | 57  | PIB_IO49    | E26           |  |  |
| 45  | GND             |                                         | 56  | PIB_IO48    | E25           |  |  |
| 46  | PIB_IO41        | A23 (LC)                                | 55  | PIB_IO47    | E24           |  |  |
| 47  | PIB_IO42        | A24 (CC)                                | 54  | PIB_IO46    | D26 (CC)      |  |  |
| 48  | +3,3 Volt       |                                         | 53  | PIB_IO45    | D25 (LC)      |  |  |
| 49  | +3,3 Volt       |                                         | 52  | PIB_IO44    | C26           |  |  |
| 50  | +3,3 Volt       |                                         | 51  | PIB_IO43    | C25           |  |  |

CON3 connects to the 78-pin HD-SUBD connector CON2. 32 IO are routed as 16 differential pairs with a typical differential impedance of 100 Ohms +/-10%. The pinout with the existing differential pairs marked is available in table "CON 3 Plug-In board to External HD-SUB connector".

To power active devices on Plug-In boards supply voltages +3,3 Volt, +5 Volt and +12 Volt are provided on CON3 and CON4. +3,3 Volt and +12 Volt are fed from the PCIe-

Connector and can supply current up to the limits of the PCIe specification. The +5 Volt supply is provided through a LM2576S step-down voltage regulator from the +12 Volt supply rail. Current supplied by +5 Volt rail should not exceed 1A.

| CON 3 | Plug-In board to External 78-pin HD-SUB connector CON 2 |              |     |               |              |  |
|-------|---------------------------------------------------------|--------------|-----|---------------|--------------|--|
| Pin   | HD-SUB                                                  | Differential | Pin | HD-SUB        | Differential |  |
| 1     | GND                                                     |              | 100 | GND           |              |  |
| 2     | GND                                                     |              | 99  | GND           |              |  |
| 3     | GND                                                     |              | 98  | GND           |              |  |
| 4     | HD-Sub Pin 39                                           | Diff Pair 0  | 97  | HD-Sub Pin 59 | Diff Pair 8  |  |
| 5     | HD-Sub Pin 20                                           | Diff Pair 0  | 96  | HD-Sub Pin 78 | Diff Pair 8  |  |
| 6     | HD-Sub Pin 38                                           | Diff Pair 1  | 95  | HD-Sub Pin 58 | Diff Pair 9  |  |
| 7     | HD-Sub Pin 19                                           | Diff Pair 1  | 94  | HD-Sub Pin 77 | Diff Pair 9  |  |
| 8     | HD-Sub Pin 37                                           | Diff Pair 2  | 93  | HD-Sub Pin 57 | Diff Pair 10 |  |
| 9     | HD-Sub Pin 18                                           | Diff Pair 2  | 92  | HD-Sub Pin 76 | Diff Pair 10 |  |
| 10    | HD-Sub Pin 36                                           | Diff Pair 3  | 91  | HD-Sub Pin 56 | Diff Pair 11 |  |
| 11    | HD-Sub Pin 17                                           | Diff Pair 3  | 90  | HD-Sub Pin 75 | Diff Pair 11 |  |
| 12    | HD-Sub Pin 35                                           | Diff Pair 4  | 89  | HD-Sub Pin 55 | Diff Pair 12 |  |
| 13    | HD-Sub Pin 16                                           | Diff Pair 4  | 88  | HD-Sub Pin 74 | Diff Pair 12 |  |
| 14    | HD-Sub Pin 34                                           | Diff Pair 5  | 87  | HD-Sub Pin 54 | Diff Pair 13 |  |
| 15    | HD-Sub Pin 15                                           | Diff Pair 5  | 86  | HD-Sub Pin 73 | Diff Pair 13 |  |
| 16    | HD-Sub Pin 33                                           | Diff Pair 6  | 85  | HD-Sub Pin 53 | Diff Pair 14 |  |
| 17    | HD-Sub Pin 14                                           | Diff Pair 6  | 84  | HD-Sub Pin 72 | Diff Pair 14 |  |
| 18    | HD-Sub Pin 32                                           | Diff Pair 7  | 83  | HD-Sub Pin 52 | Diff Pair 15 |  |
| 19    | HD-Sub Pin 13                                           | Diff Pair 7  | 82  | HD-Sub Pin 71 | Diff Pair 15 |  |
| 20    | HD-Sub Pin 12                                           |              | 81  | HD-Sub Pin 51 |              |  |
| 21    | HD-Sub Pin 31                                           |              | 80  | HD-Sub Pin 70 |              |  |
| 22    | HD-Sub Pin 11                                           |              | 79  | HD-Sub Pin 50 |              |  |
| 23    | HD-Sub Pin 30                                           |              | 78  | HD-Sub Pin 69 |              |  |
| 24    | HD-Sub Pin 10                                           |              | 77  | HD-Sub Pin 68 |              |  |
| 25    | HD-Sub Pin 9                                            |              | 76  | HD-Sub Pin 67 |              |  |
| 26    | HD-Sub Pin 8                                            |              | 75  | HD-Sub Pin 66 |              |  |
| 27    | HD-Sub Pin 7                                            |              | 74  | HD-Sub Pin 65 |              |  |
| 28    | HD-Sub Pin 6                                            |              | 73  | HD-Sub Pin 64 |              |  |
| 29    | HD-Sub Pin 5                                            |              | 72  | HD-Sub Pin 63 |              |  |
| 30    | HD-Sub Pin 4                                            |              | 71  | HD-Sub Pin 62 |              |  |
| 31    | HD-Sub Pin 3                                            |              | 70  | HD-Sub Pin 61 |              |  |

| CON 3 | Plug-In board to External 78-pin HD-SUB connector CON 2 |              |     |               |              |  |
|-------|---------------------------------------------------------|--------------|-----|---------------|--------------|--|
| Pin   | HD-SUB                                                  | Differential | Pin | HD-SUB        | Differential |  |
| 32    | HD-Sub Pin 2                                            |              | 69  | HD-Sub Pin 60 |              |  |
| 33    | HD-Sub Pin 29                                           |              | 68  | HD-Sub Pin 49 |              |  |
| 34    | HD-Sub Pin 28                                           |              | 67  | HD-Sub Pin 48 |              |  |
| 35    | HD-Sub Pin 27                                           |              | 66  | HD-Sub Pin 47 |              |  |
| 36    | HD-Sub Pin 26                                           |              | 65  | HD-Sub Pin 46 |              |  |
| 37    | HD-Sub Pin 25                                           |              | 64  | HD-Sub Pin 45 |              |  |
| 38    | HD-Sub Pin 24                                           |              | 63  | HD-Sub Pin 44 |              |  |
| 39    | HD-Sub Pin 23                                           |              | 62  | HD-Sub Pin 43 |              |  |
| 40    | HD-Sub Pin 22                                           |              | 61  | HD-Sub Pin 42 |              |  |
| 41    | HD-Sub Pin 21                                           |              | 60  | HD-Sub Pin 41 |              |  |
| 42    | GND                                                     |              | 59  | GND           |              |  |
| 43    | GND                                                     |              | 58  | GND           |              |  |
| 44    | GND                                                     |              | 57  | GND           |              |  |
| 45    | +5 Volt                                                 |              | 56  | +5 Volt       |              |  |
| 46    | +5 Volt                                                 |              | 55  | +5 Volt       |              |  |
| 47    | +5 Volt                                                 |              | 54  | +5 Volt       |              |  |
| 48    | +12 Volt                                                |              | 53  | +12 Volt      |              |  |
| 49    | +12 Volt                                                |              | 52  | +12 Volt      |              |  |
| 50    | +12 Volt                                                |              | 51  | +12 Volt      |              |  |

| CON 2 External 78-pin HD-SUB to Plug-In board connector CON 3 |     |           |     |           |       |           |     |
|---------------------------------------------------------------|-----|-----------|-----|-----------|-------|-----------|-----|
| HD-SUB                                                        | PIB | HD-SUB    | PIB | HD-SUB    | PIB   | HD-SUB    | PIB |
| HD-Pin 1                                                      | GND | HD-Pin 21 | 41  | HD-Pin 40 | EARTH | HD-Pin 60 | 69  |
| HD-Pin 2                                                      | 32  | HD-Pin 22 | 40  | HD-Pin 41 | 60    | HD-Pin 61 | 70  |
| HD-Pin 3                                                      | 31  | HD-Pin 23 | 39  | HD-Pin 42 | 61    | HD-Pin 62 | 71  |
| HD-Pin 4                                                      | 30  | HD-Pin 24 | 38  | HD-Pin 43 | 62    | HD-Pin 63 | 72  |
| HD-Pin 5                                                      | 29  | HD-Pin 25 | 37  | HD-Pin 44 | 63    | HD-Pin 64 | 73  |
| HD-Pin 6                                                      | 28  | HD-Pin 26 | 36  | HD-Pin 45 | 64    | HD-Pin 65 | 74  |
| HD-Pin 7                                                      | 27  | HD-Pin 27 | 35  | HD-Pin 46 | 65    | HD-Pin 66 | 75  |
| HD-Pin 8                                                      | 26  | HD-Pin 28 | 34  | HD-Pin 47 | 66    | HD-Pin 67 | 76  |
| HD-Pin 9                                                      | 25  | HD-Pin 29 | 33  | HD-Pin 48 | 67    | HD-Pin 68 | 77  |
| HD-Pin 10                                                     | 24  | HD-Pin 30 | 23  | HD-Pin 49 | 68    | HD-Pin 69 | 78  |
| HD-Pin 11                                                     | 22  | HD-Pin 31 | 21  | HD-Pin 50 | 79    | HD-Pin 70 | 80  |

| CON 2 External 78-pin HD-SUB to Plug-In board connector CON 3 |     |           |     |           |     |           |     |
|---------------------------------------------------------------|-----|-----------|-----|-----------|-----|-----------|-----|
| HD-SUB                                                        | PIB | HD-SUB    | PIB | HD-SUB    | PIB | HD-SUB    | PIB |
| HD-Pin 12                                                     | 20  | HD-Pin 32 | 18  | HD-Pin 51 | 81  | HD-Pin 71 | 82  |
| HD-Pin 13                                                     | 19  | HD-Pin 33 | 16  | HD-Pin 52 | 83  | HD-Pin 72 | 84  |
| HD-Pin 14                                                     | 17  | HD-Pin 34 | 14  | HD-Pin 53 | 85  | HD-Pin 73 | 86  |
| HD-Pin 15                                                     | 15  | HD-Pin 35 | 12  | HD-Pin 54 | 87  | HD-Pin 74 | 88  |
| HD-Pin 16                                                     | 13  | HD-Pin 36 | 10  | HD-Pin 55 | 89  | HD-Pin 75 | 90  |
| HD-Pin 17                                                     | 11  | HD-Pin 37 | 8   | HD-Pin 56 | 91  | HD-Pin 76 | 92  |
| HD-Pin 18                                                     | 9   | HD-Pin 38 | 6   | HD-Pin 57 | 93  | HD-Pin 77 | 94  |
| HD-Pin 19                                                     | 7   | HD-Pin 39 | 4   | HD-Pin 58 | 95  | HD-Pin 78 | 96  |
| HD-Pin 20                                                     | 5   |           |     | HD-Pin 59 | 97  |           |     |



*Figure 5: PCIeV4BASE PCIe slot bracket* 

#### Leds

The *PCIeV4BASE* is equipped with several LEDs. The PWR LED gives information upon the power supply state. The varying supply voltages needed by the Xilinx<sup>™</sup> FPGA are ramped up sequential. PWR LED starts to light after all voltages have reached an appropriate level. Upon successful configuration the CFG LED lights up and stays on as long as the device is configured. Additionally 8 user- configurable LEDs allow to make internal monitoring states visible by driving the appropriate FPGA I/O high.

| LEDs        |                   |
|-------------|-------------------|
| LED         | Comment           |
| LED0 Green  | FPGA I/O Ball D22 |
| LED1 Green  | FPGA I/O Ball C22 |
| LED2 Green  | FPGA I/O Ball E21 |
| LED3 Green  | FPGA I/O Ball D21 |
| LED4 Yellow | FPGA I/O Ball C21 |
| LED5 Yellow | FPGA I/O Ball B24 |
| LED6 Yellow | FPGA I/O Ball C20 |
| LED7 Yellow | FPGA I/O Ball B23 |

| LEDs    |                   |
|---------|-------------------|
| LED     | Comment           |
| CFG LED | Configuration LED |
| PWR LED | POWER             |

### PCIe Controller local bus signals

This section describes in short the interface between Virtex<sup>™</sup>4 FPGA and PLX PEX8311. PEX8311 supports three types of local bus processor interface. For *PCleV4BASE* only J mode with multiplexed address/data bus is available. From the three existing data transfer modes of PEX8311 Direct Slave mode and DMA mode are implemented. For data transmission 32 Bit single read/write and DMA single and continuous burst cycles are supported. Further information about the usage of the local bus interface can be found in chapter D section 'design "pciev4base" '. It may also be useful to have a look at the documentation for the x1 Lane PCIe Bridge PEX8311 at PLX (<u>http://www.plxtech.com/products/expresslane/pex8311.asp</u>).

The following spreadsheet "Local bus signals" gives an overview of the local bus signals and which FPGA I/O they are connected to.

| Local bus signals |              |                |                              |                                          |  |  |
|-------------------|--------------|----------------|------------------------------|------------------------------------------|--|--|
| FPGA I/O          | I/O Standard | Signal<br>name | External<br>pull-up<br>/down | Comment                                  |  |  |
| E18               | LVCMOS33     | ADS#           | pull-up                      | Address strobe                           |  |  |
| A7                | LVCMOS33     | ALE            | pull-down                    | Address latch enable                     |  |  |
| C19               | LVCMOS33     | BIGEND#        | pull-up                      | Big- endian select                       |  |  |
| D18               | LVCMOS33     | BLAST#         | pull-up                      | Burst last                               |  |  |
| E17               | LVCMOS33     | BREQi          | pull-down                    | Bus request in                           |  |  |
| F17               | LVCMOS33     | BREQo          | pull-down                    | Bus request out                          |  |  |
| D10               | LVCMOS33     | BTERM#         | pull-up                      | Burst terminate                          |  |  |
| D19               | LVCMOS33     | CCS#           | pull-up                      | Configuration register select            |  |  |
| A20               | LVCMOS33     | DACK0#         | pull-up                      | DMA channel 0<br>demand mode acknowledge |  |  |
| B20               | LVCMOS33     | DACK1#         | pull-up                      | DMA channel 1<br>demand mode acknowledge |  |  |
| A6                | LVCMOS33     | DEN#           | pull-up                      | Data enable                              |  |  |
| F10               | LVCMOS33     | DP0            |                              | Data parity 0                            |  |  |
| A9                | LVCMOS33     | DP1            |                              | Data parity 1                            |  |  |
| B9                | LVCMOS33     | DP2            |                              | Data parity 2                            |  |  |

| Local bus signals |              |                |                              |                                            |  |
|-------------------|--------------|----------------|------------------------------|--------------------------------------------|--|
| FPGA I/O          | I/O Standard | Signal<br>name | External<br>pull-up<br>/down | Comment                                    |  |
| D9                | LVCMOS33     | DP3            |                              | Data parity 3                              |  |
| D20               | LVCMOS33     | DREQ0#         | pull-up                      | DMA channel 0<br>demand mode request       |  |
| B21               | LVCMOS33     | DREQ1#         | pull-up                      | DMA channel 1<br>demand mode request       |  |
| A5                | LVCMOS33     | DT/R#          | pull-up                      | Data transmit / receive                    |  |
| E20               | LVCMOS33     | EOT#           | pull-up                      | End of transfer<br>for current DMA channel |  |
| AD13              | LVCMOS33     | LAD 0          |                              | Multiplexed data address bus               |  |
| AC13              | LVCMOS33     | LAD 1          |                              | Multiplexed data address bus               |  |
| AC15              | LVCMOS33     | LAD 2          |                              | Multiplexed data address bus               |  |
| AC16              | LVCMOS33     | LAD 3          |                              | Multiplexed data address bus               |  |
| AA11              | LVCMOS33     | LAD 4          |                              | Multiplexed data address bus               |  |
| AA12              | LVCMOS33     | LAD 5          |                              | Multiplexed data address bus               |  |
| AD14              | LVCMOS33     | LAD 6          |                              | Multiplexed data address bus               |  |
| AC14              | LVCMOS33     | LAD 7          |                              | Multiplexed data address bus               |  |
| AA13              | LVCMOS33     | LAD 8          |                              | Multiplexed data address bus               |  |
| AB13              | LVCMOS33     | LAD 9          |                              | Multiplexed data address bus               |  |
| AA15              | LVCMOS33     | LAD 10         |                              | Multiplexed data address bus               |  |
| AA16              | LVCMOS33     | LAD 11         |                              | Multiplexed data address bus               |  |
| AC11              | LVCMOS33     | LAD 12         |                              | Multiplexed data address bus               |  |
| AC12              | LVCMOS33     | LAD 13         |                              | Multiplexed data address bus               |  |
| AB14              | LVCMOS33     | LAD 14         |                              | Multiplexed data address bus               |  |
| AA14              | LVCMOS33     | LAD 15         |                              | Multiplexed data address bus               |  |
| D12               | LVCMOS33     | LAD 16         |                              | Multiplexed data address bus               |  |
| E13               | LVCMOS33     | LAD 17         |                              | Multiplexed data address bus               |  |
| C16               | LVCMOS33     | LAD 18         |                              | Multiplexed data address bus               |  |
| D16               | LVCMOS33     | LAD 19         |                              | Multiplexed data address bus               |  |
| D11               | LVCMOS33     | LAD 20         |                              | Multiplexed data address bus               |  |
| C11               | LVCMOS33     | LAD 21         |                              | Multiplexed data address bus               |  |
| E14               | LVCMOS33     | LAD 22         |                              | Multiplexed data address bus               |  |
| D15               | LVCMOS33     | LAD 23         |                              | Multiplexed data address bus               |  |
| D13               | LVCMOS33     | LAD 24         |                              | Multiplexed data address bus               |  |
| D14               | LVCMOS33     | LAD 25         |                              | Multiplexed data address bus               |  |

| Local bus signals |              |                     |                              |                                     |  |  |  |
|-------------------|--------------|---------------------|------------------------------|-------------------------------------|--|--|--|
| FPGA I/O          | I/O Standard | Signal<br>name      | External<br>pull-up<br>/down | Comment                             |  |  |  |
| F15               | LVCMOS33     | LAD 26              |                              | Multiplexed data address bus        |  |  |  |
| F16               | LVCMOS33     | LAD 27              |                              | Multiplexed data address bus        |  |  |  |
| F11               | LVCMOS33     | LAD 28              |                              | Multiplexed data address bus        |  |  |  |
| F12               | LVCMOS33     | LAD 29              |                              | Multiplexed data address bus        |  |  |  |
| F13               | LVCMOS33     | LAD 30              |                              | Multiplexed data address bus        |  |  |  |
| F14               | LVCMOS33     | LAD 31              |                              | Multiplexed data address bus        |  |  |  |
| A8                | LVCMOS33     | LBE0#               | pull-up                      | Local byte enable 0                 |  |  |  |
| F9                | LVCMOS33     | LBE1#               | pull-up                      | Local byte enable 1                 |  |  |  |
| C8                | LVCMOS33     | LBE2#               | pull-up                      | Local byte enable 2                 |  |  |  |
| D8                | LVCMOS33     | LBE3#               | pull-up                      | Local byte enable 3                 |  |  |  |
|                   | LVCMOS33     | LCLK                |                              | Local processor clock (66MHz)       |  |  |  |
| C17               | LVCMOS33     | LHOLD               | pull-down                    | Local hold request                  |  |  |  |
| D17               | LVCMOS33     | LHOLDA              | pull-down                    | Local hold acknowledge              |  |  |  |
| F19               | LVCMOS33     | LINTi#              | pull-up                      | Local interrupt input               |  |  |  |
| A18               | LVCMOS33     | LINTo#              | pull-up                      | Local interrupt output              |  |  |  |
| B18               | LVCMOS33     | LRESET#             | pull-up                      | Local bus reset                     |  |  |  |
| E10               | LVCMOS33     | LSERR#              | pull-up                      | Local system error interrupt output |  |  |  |
| E9                | LVCMOS33     | LW/R#               | pull-up                      | Local write/read                    |  |  |  |
| F18               | LVCMOS33     | READY#              | pull-up                      | Ready I/O                           |  |  |  |
| C10               | LVCMOS33     | WAIT#               | pull-up                      | Wait I/O                            |  |  |  |
| A19               | LVCMOS33     | USERo               | pull-up                      | General purpose user output         |  |  |  |
| B3                | LVCMOS33     | GPIO <sup>6</sup> 0 |                              | General purpose I/O 0               |  |  |  |
| A3                | LVCMOS33     | GPIO 1              |                              | General purpose I/O 1               |  |  |  |
| A4                | LVCMOS33     | GPIO 2              |                              | General purpose I/O 2               |  |  |  |
| B4                | LVCMOS33     | GPIO 3              |                              | General purpose I/O 3               |  |  |  |

6 GPIO 0,1,2,3 are not accessible by standard PCIBase API

## JTAG interface

In addition to configuration via PCIe, it is possible to download configuration data using a JTAG interface. The *PCIeV4BASE* is equipped as standard with a 2- row 14- pin connector to plug-in the *Parallel Cable IV*<sup>7</sup> from Xilinx<sup>™</sup>. But the JTAG interface is not only suitable to download designs for testing purposes but enables the user to check a running design by the help of software tools provided by Xilinx<sup>™</sup>, for instance ChipScope<sup>8</sup>.

| CON1 JTAG connector       |               |
|---------------------------|---------------|
| Pin                       | Comment       |
| Pin 1, 3, 5, 7, 9, 11, 13 | GND           |
| Pin 2                     | +3,3 Volt     |
| Pin 4                     | TMS           |
| Pin 6                     | ТСК           |
| Pin 8                     | TDO           |
| Pin 10                    | TDI           |
| Pin 12, 14                | Not connected |

PCIEV4BASE / C1080-3807

<sup>7</sup> Parallel Cable IV is not included

<sup>8</sup> ChipScope is not included. A demo version is available at the Xilinx<sup>™</sup> webpage. (http://www.xilinx.com/ise/optional\_prod/cspro.htm)

# FPGA design

# Introduction

The CESYS PCIeV4BASE Card is shipped with some demonstration FPGA designs to give you an easy starting point for own development projects. The whole source code is written in VHDL. Verilog and schematic entry design flows are not supported.

- The design "pciev4base" demonstrates the implementation of a system-on-chip (SOC) with host software access to the peripherals like GPIOs and DDR2 SODIMM over PCIe.
- The design "performance\_test" allows high speed data transfers from and to the FPGA over PCIe and can be used for software benchmarking purposes.

The Virtex4 XCV4LX25 Device is supported by the free Xilinx<sup>™</sup> ISE Webpack development software. You will have to change some options of the project properties for own applications. There are some control signals of the PLX PEX8311 PCIe controller routed to FPGA pins, but not used in FPGA designs. These signals must not be pulled into any direction! Otherwise the whole host system could stall! Right click on process "generate programming file". Then you will have to change properties=>configuration options "unused iob pins" to "float":

| ategory                                                     |                                          |                                           |   |  |  |  |
|-------------------------------------------------------------|------------------------------------------|-------------------------------------------|---|--|--|--|
| General Options<br>Configuration Options<br>Startup Options | Configuration Options                    |                                           |   |  |  |  |
| · Readback Options                                          | Property Name Value                      |                                           |   |  |  |  |
|                                                             | Configuration Rate                       | Default (6)                               |   |  |  |  |
|                                                             | Configuration Clk (Configuration Pins)   | Pull Up                                   | ~ |  |  |  |
|                                                             | Configuration Pin M0                     | Pull Up                                   | ~ |  |  |  |
|                                                             | Configuration Pin M1                     | Pull Up                                   | ~ |  |  |  |
|                                                             | Configuration Pin M2                     | Pull Up                                   | ~ |  |  |  |
|                                                             | Configuration Pin Program                | Pull Up                                   | ~ |  |  |  |
|                                                             | Configuration Pin Done                   | Pull Up                                   | ~ |  |  |  |
|                                                             | JTAG Pin TCK                             | Pull Up<br>Pull Up<br>Pull Up<br>Pull Up  |   |  |  |  |
|                                                             | JTAG Pin TDI                             |                                           |   |  |  |  |
|                                                             | JTAG Pin TDO                             |                                           |   |  |  |  |
|                                                             | JTAG Pin TMS                             |                                           |   |  |  |  |
|                                                             | Unused IOB Pins                          | Float                                     | ~ |  |  |  |
|                                                             | UserID Code (8 Digit Hexadecimal)        | 0xFFFFFFFF                                |   |  |  |  |
|                                                             | Reset DCM if SHUTDOWN & AGHIGH performed |                                           |   |  |  |  |
|                                                             | DCI Update Mode                          | As Required                               | ~ |  |  |  |
|                                                             |                                          | Property display level: Standard 💌 Defaul | t |  |  |  |

Figure 6: ISE Generate Programming File Properties (Config. Opt.)

A bitstream in the "\*.bin"-format is needed, if you want to download your FPGA design with the CESYS software API-functions LoadBIN() and ProgramFPGA(). The generation of this file is disabled by default in the Xilinx<sup>™</sup> ISE development environment. Check "create binary configuration file" at right click "generate programming file"=>properties=>general options:

| 📨 Process Properties                                                            |                                             | × |  |  |  |
|---------------------------------------------------------------------------------|---------------------------------------------|---|--|--|--|
| <u>C</u> ategory                                                                |                                             |   |  |  |  |
| General Options<br>Configuration Options<br>Startup Options<br>Readback Options | General Options                             |   |  |  |  |
|                                                                                 | Property Name Value                         |   |  |  |  |
|                                                                                 | Run Design Rules Checker (DRC)              |   |  |  |  |
|                                                                                 | Create Bit File                             |   |  |  |  |
|                                                                                 | Create Binary Configuration File            |   |  |  |  |
|                                                                                 | Create ASCII Configuration File             |   |  |  |  |
|                                                                                 | Create IEEE 1532 Configuration File         |   |  |  |  |
|                                                                                 | Enable BitStream Compression                |   |  |  |  |
|                                                                                 | Enable Debugging of Serial Mode BitStream 📃 |   |  |  |  |
|                                                                                 | Enable Cyclic Redundancy Checking (CRC) 🔽   |   |  |  |  |
|                                                                                 |                                             |   |  |  |  |
|                                                                                 |                                             |   |  |  |  |
|                                                                                 |                                             |   |  |  |  |
|                                                                                 |                                             |   |  |  |  |
|                                                                                 |                                             |   |  |  |  |
|                                                                                 |                                             |   |  |  |  |
|                                                                                 |                                             |   |  |  |  |
|                                                                                 | Property display level: Standard 💌 Default  |   |  |  |  |
|                                                                                 |                                             | _ |  |  |  |
|                                                                                 | OK Cancel Apply Help                        |   |  |  |  |

Figure 7: ISE Generate Programming File Properties (Gen. Opt.)

After ProgramFPGA () is called and the FPGA design is completely downloaded, the pin LRESET# (note: the postfix # means, that the signal is active low) is automatically pulsed (HIGH/LOW/HIGH). This signal can be used for resetting the FPGA design. The API-function ResetFPGA () can be called to initiate a pulse on LRESET# at a user given time. The following sections will give you a brief introduction about the data transfer from and to the FPGA over the PLX PEX8311 PCIe controller's local bus, the WISHBONE interconnection architecture and the provided peripheral controllers. The PCIeV4BASE uses J mode, direct slave, 32 Bit single read/write and DMA single and continuous burst cycles for transferring data. For further information about the PLX local bus see PEX8311 Data Book (PEX\_8311AA\_Data\_Book\_v0.90\_10Apr06.pdf, chapters 6 to 8) and about the WISHBONE architecture see specification B.3 (wbspec\_b3.pdf).

# FPGA source code copyright information

This source code is copyrighted by CESYS GmbH / GERMANY, unless otherwise noted.

# FPGA source code license

THIS SOURCECODE IS NOT FREE! IT IS FOR USE TOGETHER WITH THE CESYS *PCIeV4BASE* PCIe CARD ONLY! YOU ARE NOT ALLOWED TO MODIFY AND DISTRIBUTE OR USE IT WITH ANY OTHER HARDWARE, SOFTWARE OR ANY OTHER KIND OF ASIC OR PROGRAMMABLE LOGIC DESIGN WITHOUT THE EXPLICIT PERMISSION OF THE COPYRIGHT HOLDER!

# Disclaimer of warranty

THIS SOURCECODE IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT THERE IS NO WARRANTY OR SUPPORT FOR THIS SOURCECODE. THE COPYRIGHT HOLDER PROVIDES THIS SOURCECODE "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THIS SOURCECODE IS WITH YOU. SHOULD THIS SOURCECODE PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT WILL THE COPYRIGHT HOLDER BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THIS SOURCECODE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THIS SOURCECODE TO OPERATE WITH ANY OTHER SOFTWARE-PROGRAMS, HARDWARE-CIRCUITS OR ANY OTHER KIND OF ASIC OR PROGRAMMABLE LOGIC DESIGN), EVEN IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

# Design "pciev4base"

An on-chip-bus system is implemented in this design. The VHDL source code shows you, how to build a 32 Bit WISHBONE based shared bus architecture. All devices of the WISHBONE system support only SINGLE READ / WRITE Cycles. Files and modules having something to do with the WISHBONE system are labeled with the prefix "wb\_". The WISHBONE master is labeled with the additional prefix "ma\_" and the slaves are labeled with "sl\_".



Figure 8: WISHBONE system overview

## Files and modules

## src/wishbone.vhd:

A package containing datatypes, constants, components, signals and information for software developers needed for the WISHBONE system. You will find C/C++-style "#define"s with important addresses and values to copy and paste into your software source code after VHDL comments ("- -").

### src/pciev4base\_top.vhd:

This is the top level entity of the design. The WISHBONE components are instantiated here. The internal VHDL signals are mapped to the 100 pin connector of the general purpose I/O plug in boards, so the pinout of the user constraints file does not need to be changed for other plug in boards. You will find a table with the column "HDL Pin" and some pin explanations in the plug in board documentation at the end of this document. This table associates the pin numbers of the FPGA and the 100 pin connector with the bidirectional VHDL data bus port "pin\_gpiomoduleport\_io".

### src/wb\_syscon.vhd:

This entity provides the WISHBONE system signals RST and CLK. It uses LRESET# and SYSTEMCLOCK as external reset and clock source.

#### src/wb\_intercon.vhd:

All WISHBONE devices are connected to this shared bus interconnection logic. Some MSBs of the address are used to select the appropriate slave.

#### src/wb\_ma\_plx.vhd:

This is the entity of the WISHBONE master, which converts the local bus protocol for 32 Bit single read/write-cycles of the PLX PCI controller into a WISHBONE conform one.

#### src/wb\_sl\_bram.vhd:

A internal BlockRAM is instantiated here and simply connected to the WISHBONE architecture.

#### src/wb\_sl\_gpio.vhd:

This entity shows you, how to control the dual 8-bit bus transceiver circuits (see 74FCT162245T\_Datasheet.pdf for details) on the plug in board and use them as general purpose I/Os. The eight LEDs are controlled by this module as well.

### src/wb\_sl\_timer.vhd:

A 32 Bit timer with programmable period (15 ns steps). The timer starts running if the period is not null. It generates an interrupt at overflow time. The interrupt output is asserted as long as the interrupt is not acknowledged.

### src/sl\_ddr2.vhd:

This entity connects the memory interface IP core memory\_interface\_top.vhd created by the Xilinx<sup>™</sup> MIG Tool to the WISHBONE system. Xilinx<sup>™</sup> LogiCORE FIFOs are used for clock domain translation (DDR2 clock domain <=> WISHBONE clock domain). The prefix "wb\_" is missing here, because this slave module is not exactly a WISHBONE device, but uses the WISHBONE architecture for transferring data.

#### src/xil\_mig\_ddr2sodimm/:

This directory contains the IP core memory\_interface\_top.vhd and all other VHDL source code files generated by the Xilinx<sup>TM</sup> MIG Tool version 1.72. Note that these source code files are copyrighted by Xilinx<sup>TM</sup> and are absolutely not supported by CESYS! For details on the generated IP see the MIG user guide (ug086.pdf).

#### ddr2\_addr\_fifo.vhd|\*.ngc|\*.xco, ddr2\_ram2user\_fifo.vhd|\*.ngc|\*.xco, ddr2\_user2ram\_fifo.vhd|\*.ngc|\*.xco:

Design files for Xilinx<sup>™</sup> LogiCORE FIFOs. For further details see Xilinx<sup>™</sup> FIFO Generator v3.3 user guide and data sheet (fifo\_generator\_ug175.pdf, fifo\_generator\_ds317.pdf)

#### pciev4base.ise:

Project file for Xilinx<sup>™</sup> ISE version 9.1.03i

## pciev4base.ucf:

User constraint file with timing and pinout constraints

## **Bus transactions**

The API-functions ReadRegister(), WriteRegister() lead to direct slave single cycles and ReadBlock(), WriteBlock() to DMA transfers. Bursting is not allowed in the WISHBONE demo application. You can find details on enabling/disabling the local bus continuous burst mode in the software API and the source code of the software examples. There is no difference in the PLX local bus cycles "direct slave" and "DMA", if continuous burst is disabled for DMA transfers. Continuous burst mode can be disabled by the FPGA using the BTERM# signal as well. The address is incremented automatically in block transfers.

## Local bus signals driven by the PLX PCIe controller:

- LW/R#: local bus write/not read, indicates, if a read or write cycle is in progress
- ADS#: address strobe, indicates a valid address, if asserted low by PLX
- BLAST#: burst last, indicates the last data cycle in burst mode, can be ignored in single cycle mode

## Local bus signals driven by the FPGA:

- READY#: handshake signal, FPGA indicates a successful data transfer for writing and valid data on bus for reading by asserting this signal low, FPGA can insert wait states by delaying this signal
- BTERM#: burst terminate signal, FPGA can break the current burst and request a new address cycle by asserting this signal low. If READY# signal is assigned to the BTERM# pin too, then PLX PCIe controller is forced to transfer all data in single cycles.

## Local bus signal driven by the PLX PCI controller and the FPGA:

• LAD[31:0]: 32 Bit multiplexed address/data bus, FPGA drives valid data on this bus in read cycles while asserting the READY# signal low, the FPGA LAD[31:0] output drivers have to be in a high impedance state at all other times

The PLX local bus protocol is converted into a WISHBONE based one. So the PLX becomes a master device in the internal WISHBONE architecture. Input signals for the WISHBONE master are labeled with the postfix "\_I", output signals with "\_O".

## WISHBONE signals driven by the master:

- STB\_O: strobe, qualifier for the other output signals of the master, indicates valid data and control signals
- WE\_O: write enable, indicates, if a write or read cycle is in progress
- ADR\_O[31:0]: 32-Bit address bus, the PLX local bus uses BYTE addressing, but the WISHBONE system uses DWORD (32-Bit) addressing. The address is shifted two bits inside the WISHBONE master module
- DAT\_O[31:0]: 32-Bit data out bus for data transportation from master to slaves

## WISHBONE signals driven by slaves:

- DAT\_I[31:0]: 32-Bit data in bus for data transportation from slaves to master
- ACK\_I: handshake signal, slave devices indicate a successful data transfer for writing and valid data on bus for reading by asserting this signal, slaves can insert wait states by delaying this signal, this delay leads to a delay of the READY# signal on the local bus side

The signals LHOLD (local hold request) driven by PLX and LHOLDA (local hold acknowledge) driven by the FPGA are used for local bus arbitration. LHOLD can be simply looped back to LHOLDA, because the PLX PCI controller is the one and only master on the local bus.



Figure 9: Bus transactions with WriteRegister() and WriteBlock()



Figure 10: Bus transactions with ReadRegister() and ReadBlock()

The WISHBONE signals in these illustrations and explanations are shown as simple bit types or bit vector types, but in the VHDL code these signals could be encapsulated in extended data types like arrays or records.

## Example:



Port ACK\_I is connected to signal ack of element 2 of array slave, of record masters, of record intercon.

# PCIe interrupt

The FPGA has the possibility to cause PCIe interrupts. The interrupt state can be checked by calling the API-function <code>WaitForInterrupt()</code>. If the FPGA asserts the LINTi# (local interrupt input) signal low, then the function returns immediately else it returns after the programmed timeout period. The return value shows you if an interrupt event has been occurred or not. The software has to acknowledge an interrupt, i. e. by writing to a special address. The FPGA deasserts the LINTi# pin after recognizing the acknowledgment. The interrupt functionality is demonstrated by the slave timer module.
# Design "performance\_test"

Small and simple design to achieve maximum data rates over PCIe. This design has limited functionality. It handles the PLX local bus protocol as fast as possible. The last value transferred to the FPGA is stored in a 32 Bit register. The local bus address information is completely ignored. Some of the stored data bits are routed to the LEDs to demonstrate the Bit/Byte-order.

| LEDs        |                   |  |
|-------------|-------------------|--|
| LED         | Register data bit |  |
| LED0 Green  | D00               |  |
| LED1 Green  | D04               |  |
| LED2 Green  | D08               |  |
| LED3 Green  | D12               |  |
| LED4 Yellow | D16               |  |
| LED5 Yellow | D20               |  |
| LED6 Yellow | D24               |  |
| LED7 Yellow | D28               |  |

# Files and modules

#### src/performance\_test.vhd:

This is the one and only VHDL source code module. It encapsulates a small and simple local bus protocol engine as well as a single 32-Bit register.

# performance\_test.ise:

Project file for Xilinx<sup>™</sup> ISE version 9.1.03i.

# performance\_test.ucf:

User constraint file with timing and pinout constraints.

# **Bus transactions**



Figure 11: Bus transactions with ReadBlock() and WriteBlock() in continuous burst mode

This design supports the local bus continuous burst transfers as well as the single cycle transfers. For burst transfers the additional signal BLAST# (burst last) is needed, which is driven by the PLX PCIe controller. If this signal is asserted low, the PLX indicates the last LWORD it wants to transmit or receive. The FPGA can use the READY# signal for inserting wait states like in the single cycle mode. Furthermore the FPGA can drive the additional signal BTERM# (burst terminate) to break the current burst transfer and request a new address cycle. Note that the use of BTERM# is not demonstrated in "performance\_test", because it would decrease the performance.

# Software

# Introduction

The UDK (Unified Development Kit) is used to allow developers to communicate with Cesys's USB and PCI(e) devices. Older releases were just a release of USB and PCI drivers plus API combined with some shared code components. The latest UDK combines all components into one single C++ project and offers interfaces to C++, C and for .NET (Windows only). The API has functions to mask-able enumeration, unique device identification (runtime), FPGA programming and 32bit bus based data communication. PCI devices have additional support for interrupts.

# Changes to previous versions

Beginning with release 2.0, the UDK API is a truly combined interface to Cesys's USB and PCI devices. The class interface from the former USBUni and PCIBase API's was saved at a large extend, so porting applications from previous UDK releases can be done without much work.

Here are some notes about additional changes:

- Complete rewrite
- Build system cleanup, all UDK parts (except .NET) are now part of one large project
- 64 bit operating system support
- UDK tools combined into one application (UDKLab)
- Updated to latest PLX SDK (6.31)
- Identical C, C++ and .NET API interface (.NET  $\Rightarrow$  Windows only)
- Different versions of components collapsed to one UDK version
- Windows only:
  - Microsoft Windows Vista / Seven(7) support (PCI drivers are not released for Seven at the moment)
  - Driver installation / update is done by an installer now
  - Switched to Microsoft's generic USB driver (WinUSB)
  - Support moved to Visual Studio 2005, 2008 and 2010(experimental), older Visual Studio versions are not supported anymore
- Linux only:
  - Revisited USB driver, tested on latest Ubuntu distributions (32/64)
  - Simpler USB driver installation

# Windows

# Requirements

To use the UDK in own projects, the following is required:

- Installed drivers
- Microsoft Visual Studio 2005 or 2008; 2010 is experimental
- CMake 2.6 or higher  $\Rightarrow$  <u>http://www.cmake.org</u>
- wxWidgets 2.8.10 or higher (must be build separately) ⇒ <u>http://www.wxwidgets.org</u> [optionally, only if UDKLab should be build]

# **Driver installation**

The driver installation is part of the UDK installation but can run standalone on final customer machines without the need to install the UDK itself. During installation, a choice of drivers to install can be made, so it is not necessary to install i.e. PCI drivers on machines that should run USB devices only or vice versa. If USB drivers get installed on a machine that has a pre-2.0 UDK driver installation, we prefer the option for USB driver cleanup offered by the installer, this cleanly removes all dependencies of the old driver installation.

**Note:** There are separate installers for 32 and 64 bit systems.

Important: At least one device should be present when installing the drivers !

# Build UDK

# Prerequisites

The most components of the UDK are part of one large CMake project. There are some options that need to be fixed in *msvc.cmake* inside the UDK installation root:

- **BUILD\_UI\_TOOLS** If 0, UDKLab will not be part of the subsequent build procedure, if 1 it will. This requires an installation of an already built wxWidgets.
- WX\_WIDGETS\_BASE\_PATH Path to wxWidgets build root, only needed if BUILD\_UI\_TOOLS is not 0.
- USE\_STATIC\_RTL If 0, all projects are build against the dynamic runtime libraries. This requires the installation of the appropriate Visual Studio redistributable pack on every machine the UDK is used on. Using a static build does not create such dependencies, but will conflict with the standard wxWidgets build configuration.

# Solution creation and build

The preferred way is to open a command prompt inside the installation root of the UDK,

lets assume to use c:\\udkapi.

c: cd ∖udkapi

CMake allows the build directory separated to the source directory, so it's a good idea to do it inside an empty sub-directory:

mkdir build cd build

The following code requires an installation of CMake and at least one supported Visual Studio version. If CMake isn't included into the **PATH** environment variable, the path must be specified as well:

cmake ..

This searches the preferred Visual Studio installation and creates projects for it. Visual Studio Express users may need to use the command prompt offered by their installation. If multiple Visual Studio versions are installed, CMake's command parameter '-G' can be used to specify a special one, see CMake's documentation in this case. This process creates the solution files inside *c:\\udkapi\\build*. All subsequent tasks can be done in Visual Studio (with the created solution), another invocation of cmake isn't necessary under normal circumstances.

**Important:** The UDK C++ API must be build with the same toolchain and build flags like the application that uses it. Otherwise unwanted side effects in exception handling will occur ! (See example in *Add project to UDK build*).

Info: It is easy to create different builds with different Visual Studio versions by creating different build directories and invoke CMake with different '-G' options inside them:

c: cd \udkapi mkdir build2005 cd build2005 cmake -G"Visual Studio 8 2005" .. cd .. mkdir build2008 cd build2008 cmake -G"Visual Studio 9 2008" ..

# Linux

There are too many distributions and releases to offer a unique way to the UDK installation. We've chosen to work with the most recent Ubuntu release, 9.10 at the moment. All commands are tested on an up to date installation and may need some tweaking on other systems / versions.

# Requirements

- GNU C++ compiler toolchain
- zlib development libraries
- CMake 2.6 or higher ⇒ <u>http://www.cmake.org</u>
- wxWidgets 2.8.10 or higher ⇒ <u>http://www.wxwidgets.org</u> [optionally, only if UDKLab should be build]

```
sudo apt-get install build-essential cmake zlib1g-dev libwxbase2.8-dev
libwxgtk2.8-dev
```

The Linux UDK comes as gzip'ed tar archive, as the Windows installer won't usually work. The best way is to extract it to the home directory:

tar xzvf UDKAPI-x.x.tgz ~/

This creates a directory */home/[user]/udkapi[version]* which is subsequently called udkroot. The following examples assume an installation root in *~/udkapi2.0*.

**Important:** Commands sometimes contain a `symbol, have attention to use the right one, refer to command substitution if not familiar with.

# Drivers

The driver installation on Linux systems is a bit more complicated than on Windows systems. The drivers must be build against the installed kernel version. Updating the kernel requires a rebuild.

# USB

As the USB driver is written by Cesys, the installation procedure is designed to be as simple and automated as possible. The sources and support files reside in directory *<udkroot>/drivers/linux/usb*. Just go there and invoke *make*.

```
cd ~/udkapi2.0/drivers/linux/usb
make
```

If all external dependencies are met, the build procedure should finish without errors. Newer kernel releases may change things which prevent success, but it is out of the scope of our possibilities to be always up-to-date with latest kernels. To install the driver, the following command has to be done:

```
sudo make install
```

This will do the following things:

- · Install the kernel module inside the module library path, update module dependencies
- Install a new udev rule to give device nodes the correct access rights (0666) (/etc/udev/rules.d/99-ceusbuni.rules)
- Install module configuration file (/etc/dev/modprobe.d/ceusbuni.conf)
- Start module

If things work as intended, there must be an entry /proc/ceusbuni after this procedure.

The following code will completely revert the above installation (called in same directory):

sudo make remove

The configuration file, */etc/modprobe.d/ceusbuni.conf*, offers two simple options (Read the comments in the file):

- Enable kernel module debugging
- Choose between firmware which automatically powers board peripherals or not

Changing these options require a module reload to take affect.

# PCI

The PCI drivers are not created or maintained by Cesys, they are offered by the manufacturer of the PCI bridges that were used on Cesys PCI(e) boards. So problems regarding them can't be handled or supported by us.

# Important: If building PIxSdk components generate the following error / warning:

/bin/sh [[: not found

Here's a workaround: The problem is Ubuntu's default usage of *dash* as *sh*, which can't handle command *[[*. Replacing *dash* with *bash* is accomplished by the following commands that must be done as root:

```
sudo rm /bin/sh
sudo ln -s /bin/bash /bin/sh
```

Installation explained in detail:

PlxSdk decompression:

```
cd ~/udkapi2.0/drivers/linux
tar xvf PlxSdk.tar
```

Build drivers:

```
cd PlxSdk/Linux/Driver
PLX_SDK_DIR=`pwd`/../../ ./buildalldrivers
```

Loading the driver manually requires a successful build, it is done using the following commands:

```
cd ~/udkapi2.0/drivers/linux/PlxSdk
sudo PLX_SDK_DIR=`pwd` Bin/Plx_load Svc
```

PCI based boards like the PCIS3Base require the following driver:

sudo PLX\_SDK\_DIR=`pwd` Bin/Plx\_load 9056

PCIe based boards like the PCIeV4Base require the following:

sudo PLX\_SDK\_DIR=`pwd` Bin/Plx\_load 8311

Automation of this load process is out of the scope of this document.

# **Build UDK**

#### Prerequisites

The whole UDK will be build using CMake, a free cross platform build tool. It creates dynamic Makefiles on unix compatible platforms.

The first thing should be editing the little configuration file *linux.cmake* inside the installation root of the UDK. It contains the following options:

- **BUILD\_UI\_TOOLS** If 0 UDKLab isn't build, if 1 UDKLab is part of the build, but requires a compatible wxWidgets installation.
- **CMAKE\_BUILD\_TYPE** Select build type, can be one of *Debug, Release, RelWithDebInfo, MinSizeRel.* If there should be at least 2 builds in parallel, remove this line and specify the type using command line option *-DCMAKE\_BUILD\_TYPE=....*

#### Makefile creation and build

Best usage is to create an empty build directory and run cmake inside of it:

```
cd ~/udkapi2.0
mkdir build
cd build
cmake ..
```

If all external dependencies are met, this will finish creating a Makefile. To build the UDK, just invoke make:

make

Important: The UDK C++ API must be build with the same toolchain and build flags like

the application that uses it. Otherwise unwanted side effects in exception handling will occur ! (See example in *Add project to UDK build*).

# Use APIs in own projects

# C++ API

- Include file: udkapi.h
- Library file:
  - Windows: udkapi\_vc[ver]\_[arch].lib, [ver] is 8, 9, 10, [arch] is x86 or amd64, resides in lib/[build]/
  - Linux: libusbapi.so, resides in lib/
- Namespace: ceUDK

As this API uses exceptions for error handling, it is really important to use the same compiler and build settings which are used to build the API itself. Otherwise exception based stack unwinding may cause undefined side effects which are really hard to fix.

# Add project to UDK build

A simple example would be the following. Let's assume there's a source file *mytest/mytest.cpp* inside UDK's root installation. To build a *mytestexe* executable with UDK components, those lines must be appended:

```
add_executable(mytestexe mytest/mytest.cpp)
target_link_libraries(mytestexe ${UDKAPI_LIBNAME})
```

Rebuilding the UDK with these entries in Visual Studio will create a new project inside the solution (and request a solution reload). On Linux, calling *make* will just include *mytestexe* into the build process.

# C API

- Include file: udkapic.h
- Library file:
  - Windows: udkapic\_vc[ver]\_[arch].lib, [ver] is 8, 9, 10, [arch] is x86 or amd64, resides in lib/[build]/
  - Linux: libusbapic.so, resides in lib/
- Namespace: Not applicable

The C API offers all functions from a dynamic link library (Windows: .dll, Linux: .so) and uses standardized data types only, so it is usable in a wide range of environments.

Adding it to the UDK build process is nearly identical to the C++ API description, except that *\${UDKAPIC\_LIBNAME}* must be used.

# .NET API

- Include file: -
- Library file: udkapinet.dll, resided in bin/[build]
- Namespace: cesys.ceUDK

The .NET API, as well as it example application is separated from the normal UDK build. First of all, CMake doesn't have native support .NET, as well as it is working on Windows systems only. Building it has no dependency to the standard UDKAPI, all required sources are part of the .NET API project. The Visual Studio solution is located in directory *dotnet/* inside the UDK installation root. It is a Visual Studio 8/2005 solution and should be convertible to newer releases. The solution is split into two parts, the .NET API in mixed native/managed C++ and an example written in C#.

To use the .NET API in own projects, it's just needed to add the generated DLL *udkapinet.dll* to the projects references.

# API Functions in detail

**Notice:** To prevent overhead in most usual scenarios, the API does not serialize calls in any way, so the API user is responsible to serialize call if used in a multi-threaded context !

**Notice:** The examples for .NET in the following chapter are in C# coding style.

# API Error handling

Error handling is offered very different. While both C++ and .NET API use exception handling, the C API uses a classical return code / error inquiry scheme.

# C++ and .NET API

UDK API code should be embedded inside a try branch and exceptions of type *ceException* must be caught. If an exception is raised, the generated exception object offers methods to get detailed information about the error.

# C API

All UDK C API functions return either *CE\_SUCCESS* or *CE\_FAILED*. If the latter is returned, the functions below should be invoked to get the details of the error.

# Methods/Functions GetLastErrorCode

| ΑΡΙ  | Code                                     |
|------|------------------------------------------|
| C++  | unsigned int ceException::GetErrorCode() |
| С    | unsigned int GetLastErrorCode()          |
| .NET | uint ceException.GetLastErrorCode()      |

Returns an error code which is intended to group the error into different kinds. It can be one of the following constants:

| Error code       | Kind of error                                                             |
|------------------|---------------------------------------------------------------------------|
| ceE_TIMEOUT      | Errors with any kind of timeout.                                          |
| ceE_IO_ERROR     | IO errors of any kind, file, hardware, etc.                               |
| ceE_UNEXP_HW_BEH | Unexpected behavior of underlying hardware (no response, wrong data).     |
| ceE_PARAM        | Errors related to wrong call parameters (NULL pointers,).                 |
| ceE_RESOURCE     | Resource problem, wrong file format, missing dependency.                  |
| ceE_API          | Undefined behavior of underlying API.                                     |
| ceE_ORDER        | Wrong order calling a group of code (i.e. deinit() $\rightarrow$ init()). |
| ceE_PROCESSING   | Occurred during internal processing of anything.                          |
| ceE_INCOMPATIBLE | Not supported by this device.                                             |
| ceE_OUTOFMEMORY  | Failure allocating enough memory.                                         |

# GetLastErrorText

| API |    | Code                                        |
|-----|----|---------------------------------------------|
| C+  | ++ | const char *ceException::GetLastErrorText() |
| С   |    | const char *GetLastErrorText()              |
| .NE | ET | string ceException.GetLastErrorText()       |

Returns a text which describes the error readable by the user. Most of the errors contain problems meant for the developer using the UDK and are rarely usable by end users. In most cases unexpected behavior of the underlying operation system or in data transfer is reported. (All texts are in english.)

# **Device enumeration**

The complete device handling is done by the API internally. It manages the resources of all enumerated devices and offers either a device pointer or handle to API users. Calling Init() prepares the API itself, while DeInit() does a complete cleanup and invalidates all device pointers and handles.

To find supported devices and work with them, Enumerate() must be called after Init(). Enumerate() can be called multiple times for either finding devices of different types or to find newly plugged devices (primary USB at the moment). One important thing is the following: Enumerate() does **never** remove a device from the internal device list and so invalidate any pointer, it just add new ones or does nothing, even if a USB device is removed. For a clean detection of a device removal, calling Delnit(), Init() and Enumerate() (in exactly that order) will build a new, clean device list, but invalidates all previous created device pointers and handles.

To identify devices in a unique way, each device gets a UID, which is a combination of device type name and connection point, so even after a complete cleanup and new enumeration, devices can be exactly identified by this value.

# Methods/Functions

#### Init

| ΑΡΙ  | Code                         |
|------|------------------------------|
| C++  | static void ceDevice::Init() |
| С    | CE_RESULT Init()             |
| .NET | static void ceDevice.Init()  |

Prepare internal structures, must be the first call to the UDK API. Can be called after invoking Delnit() again, see top of this section.

# Delnit

| ΑΡΙ  | Code                           |
|------|--------------------------------|
| C++  | static void ceDevice::DeInit() |
| С    | CE_RESULT DeInit()             |
| .NET | static void ceDevice.DeInit()  |

Free up all internal allocated data, there must no subsequent call to the UDK API after this call, except Init() is called again. All retrieved device pointers and handles are invalid after this point.

## Enumerate

| API  | Code                                                               |
|------|--------------------------------------------------------------------|
| C++  | static void ceDevice::Enumerate(ceDevice::ceDeviceType DeviceType) |
| С    | CE_RESULT Enumerate(unsigned int DeviceType)                       |
| .NET | static void ceDevice.Enumerate(ceDevice.ceDeviceType DeviceType)   |

Search for (newly plugged) devices of the given type and add them to the internal list. Access to this list is given by GetDeviceCount() / GetDevice(). DeviceType can be one of the following:

| DeviceType          | Description                           |
|---------------------|---------------------------------------|
| ceDT_ALL            | All UDK supported devices.            |
| ceDT_PCI_ALL        | All UDK supported devices on PCI bus. |
| ceDT_PCI_PCIS3BASE  | Cesys PCIS3Base                       |
| ceDT_PCI_DOB        | DOB (*)                               |
| ceDT_PCI_PCIEV4BASE | Cesys PCIeV4Base                      |
| ceDT_PCI_RTC        | RTC (*)                               |
| ceDT_PCI_PSS        | PSS (*)                               |
| ceDT_PCI_DEFLECTOR  | Deflector (*)                         |
| ceDT_USB_ALL        | All UDK supported devices.            |
| ceDT_USB_USBV4F     | Cesys USBV4F                          |
| ceDT_USB_EFM01      | Cesys EFM01                           |
| ceDT_USB_MISS2      | MISS2 (*)                             |
| ceDT_USB_CID        | CID (*)                               |
| ceDT_USB_USBS6      | Cesys USBS6                           |

\* Customer specific devices.

#### GetDeviceCount

| ΑΡΙ  | Code                                             |
|------|--------------------------------------------------|
| C++  | static unsigned int ceDevice::GetDeviceCount()   |
| С    | CE_RESULT GetDeviceCount(unsigned int *puiCount) |
| .NET | static uint ceDevice.GetDeviceCount()            |

Return count of devices enumerated up to this point. May be larger if rechecked after calling Enumerate() in between.

# GetDevice

| ΑΡΙ  | Code                                                               |
|------|--------------------------------------------------------------------|
| C++  | static ceDevice *ceDevice::GetDevice(unsigned int uildx)           |
| С    | CE_RESULT GetDevice(unsigned int uildx, CE_DEVICE_HANDLE *pHandle) |
| .NET | static ceDevice ceDevice.GetDevice(uint uildx)                     |

Get device pointer or handle to the device with the given index, which must be smaller than the device count returned by GetDeviceCount(). This pointer or handle is valid up to the point DeInit() is called.

# Information gathering

The functions in this chapter return valuable information. All except GetUDKVersionString() are bound to devices and can be used after getting a device pointer or handle from GetDevice() only.

## Methods/Functions

#### GetUDKVersionString

| ΑΡΙ  | Code                                               |
|------|----------------------------------------------------|
| C++  | static const char *ceDevice::GetUDKVersionString() |
| С    | const char *GetUDKVersionString()                  |
| .NET | static string ceDevice.GetUDKVersionString()       |

Return string which contains the UDK version in printable format.

# GetDeviceUID

| ΑΡΙ  | Code                                                                                    |
|------|-----------------------------------------------------------------------------------------|
| C++  | const char *ceDevice::GetDeviceUID()                                                    |
| С    | CE_RESULT GetDeviceUID(CE_DEVICE_HANDLE Handle, char *pszDest, unsigned int uiDestSize) |
| .NET | string ceDevice.GetDeviceUID()                                                          |

Return string formatted unique device identifier. This identifier is in the form of *type@location* while type is the type of the device (i.e. *EFM01*) and location is the position the device is plugged to. For PCI devices, this is a combination of bus, slot and function (PCI bus related values) and for USB devices a path from device to root hub, containing the port of all used hubs. So after re-enumeration or reboot, devices on the same machine can be identified exactly.

**Notice** C API: pszDest is the buffer were the value is stored to, it must be at least of size uiDestSize.

#### GetDeviceName

| API  | Code                                                                                     |
|------|------------------------------------------------------------------------------------------|
| C++  | const char *ceDevice::GetDeviceName()                                                    |
| С    | CE_RESULT GetDeviceName(CE_DEVICE_HANDLE Handle, char *pszDest, unsigned int uiDestSize) |
| .NET | string ceDevice.GetDeviceName()                                                          |

Return device type name of given device pointer or handle.

**Notice** C API: pszDest is the buffer were the value is stored to, it must be at least of size uiDestSize.

# GetBusType

| API  | Code                                                                    |
|------|-------------------------------------------------------------------------|
| C++  | ceDevice::ceBusType ceDevice::GetBusType()                              |
| С    | CE_RESULT GetBusType(CE_DEVICE_HANDLE Handle, unsigned int *puiBusType) |
| .NET | ceDevice.ceBusType ceDevice.GetBusType()                                |

Return type of bus a device is bound to, can be any of the following:

| Constant | Bus     |
|----------|---------|
| ceBT_PCI | PCI bus |
| ceBT_USB | USB bus |

# GetMaxTransferSize

| ΑΡΙ  | Code                                                                                    |
|------|-----------------------------------------------------------------------------------------|
| C++  | unsigned int ceDevice::GetMaxTransferSize()                                             |
| С    | CE_RESULT GetMaxTransferSize(CE_DEVICE_HANDLE Handle, unsigned int *puiMaxTransferSize) |
| .NET | uint ceDevice.GetMaxTransferSize()                                                      |

Return count of bytes that represents the maximum in one transaction, larger transfers must be split by the API user.

# Using devices

After getting a device pointer or handle, devices can be used. Before transferring data to or from devices, or catching interrupts (PCI), devices must be accessed, which is done by calling Open(). All calls in this section require an open device, which must be freed by calling Close() after usage.

Either way, after calling Open(), the device is ready for communication. As of the fact, that Cesys devices usually have an FPGA on the device side of the bus, the FPGA must be made ready for usage. If this isn't done by loading contents from the on-board flash (not all devices have one), a design must be loaded by calling one of the ProgramFPGA\*() calls. These call internally reset the FPGA after design download. From now on, data can be transferred.

**Important:** All data transfer is based on a 32 bit bus system which must be implemented inside the FPGA design. PCI devices support this natively, while USB devices use a protocol which is implemented by Cesys and sits on top of a stable bulk transfer implementation.

#### Methods/Functions

#### Open

| API  | Code                                    |
|------|-----------------------------------------|
| C++  | void ceDevice::Open()                   |
| С    | CE_RESULT Open(CE_DEVICE_HANDLE Handle) |
| .NET | void ceDevice.Open()                    |

Gain access to the specific device. Calling one of the other functions in this section require a successful call to Open().

**Notice:** If two or more applications try to open one device, PCI and USB devices behave a bit different. For USB devices, Open() causes an error if the device is already in use. PCI allows opening one device from multiple processes. As PCI drivers are not developed by Cesys, it's not possible to us to prevent this (as we see this as strange behavior). The best way to share communication of more than one application with devices would be a client / server approach.

# Close

| API  | Code                                     |
|------|------------------------------------------|
| C++  | void ceDevice::Close()                   |
| С    | CE_RESULT Close(CE_DEVICE_HANDLE Handle) |
| .NET | void ceDevice.Close()                    |

Finish working with the given device.

## ReadRegister

| API  | Code                                                                                             |
|------|--------------------------------------------------------------------------------------------------|
| C++  | unsigned int ceDevice::ReadRegister(unsiged int uiRegister)                                      |
| С    | CE_RESULT ReadRegister(CE_DEVICE_HANDLE Handle, unsigned int uiRegister, unsigned int *puiValue) |
| .NET | uint ceDevice.ReadRegister(uint uiRegister)                                                      |

Read 32 bit value from FPGA design address space (internally just calling ReadBlock() with size = 4).

#### WriteRegister

| API  | Code                                                                                            |
|------|-------------------------------------------------------------------------------------------------|
| C++  | void ceDevice::WriteRegister(unsiged int uiRegister, unsigned int uiValue)                      |
| С    | CE_RESULT WriteRegister(CE_DEVICE_HANDLE Handle, unsigned int uiRegister, unsigned int uiValue) |
| .NET | void ceDevice.WriteRegister(uint uiRegister, uint uiValue)                                      |

Write 32 bit value to FPGA design address space (internally just calling WriteBlock() with size = 4).

#### ReadBlock

| API  | Code                                                                                                                                         |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|
| C++  | void ceDevice::ReadBlock(unsiged int uiAddress, unsigned char *pucData, unsigned int uiSize, bool blncAddress)                               |
| С    | CE_RESULT ReadBlock(CE_DEVICE_HANDLE Handle, unsigned int uiAddress, unsigned char *pucData, unsigned int uiSize, unsigned int uiIncAddress) |
| .NET | void ceDevice.ReadBlock(uint uiAddess, byte[] Data, uint uiLen, bool blncAddress)                                                            |

Read a block of data to the host buffer which must be large enough to hold it. The size should never exceed the value retrieved by GetMaxTransferSize() for the specific device. blncAddress is at the moment available for USB devices only. It flags to read all data from the same address instead of starting at it.

# WriteBlock

| API | Code                                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------------------|
| C++ | void ceDevice::WriteBlock(unsiged int uiAddress, unsigned char *pucData, unsigned int uiSize, bool blncAddress) |
| С   | CE_RESULT WriteBlock(CE_DEVICE_HANDLE Handle, unsigned int uiAddress,                                           |

|      | unsigned char *pucData, unsigned int uiSize, unsigned int uiIncAddress)            |
|------|------------------------------------------------------------------------------------|
| .NET | void ceDevice.WriteBlock(uint uiAddess, byte[] Data, uint uiLen, bool blncAddress) |

Transfer a given block of data to the 32 bit bus system address uiAddress. The size should never exceed the value retrieved by GetMaxTransferSize() for the specific device. blncAddress is at the moment available for USB devices only. It flags to write all data to the same address instead of starting at it.

#### WaitForInterrupt

| ΑΡΙ  | Code                                                                                                      |
|------|-----------------------------------------------------------------------------------------------------------|
| C++  | bool ceDevice::WaitForInterrupt(unsigned int uiTimeOutMS)                                                 |
| С    | CE_RESULT WaitForInterrupt(CE_DEVICE_HANDLE Handle, unsigned int<br>uiTimeOutMS, unsigned int *puiRaised) |
| .NET | bool ceDevice.WaitForInterrupt(uint uiTimeOutMS)                                                          |

(PCI only) Check if the interrupt is raised by the FPGA design. If this is done in the time specified by the timeout, the function returns immediately flagging the interrupt is raised (return code / \*puiRaised). Otherwise, the function returns after the timeout without signaling.

**Important:** If an interrupt is caught, EnableInterrupt() must be called again before checking for the next. Besides that, the FPGA must be informed to lower the interrupt line in any way.

#### EnableInterrupt

| API |      | Code                                               |
|-----|------|----------------------------------------------------|
|     | C++  | void ceDevice::EnableInterrupt()                   |
|     | С    | CE_RESULT EnableInterrupt(CE_DEVICE_HANDLE Handle) |
|     | .NET | void ceDevice.EnableInterrupt()                    |

(PCI only) Must be called in front of calling WaitForInterrupt() and every time an interrupt is caught and should be checked again.

#### ResetFPGA

| ΑΡΙ  | Code                                         |
|------|----------------------------------------------|
| C++  | void ceDevice::ResetFPGA()                   |
| С    | CE_RESULT ResetFPGA(CE_DEVICE_HANDLE Handle) |
| .NET | void ceDevice.ResetFPGA()                    |

Pulses the FPGA reset line for a short time. This should be used to sync the FPGA design with the host side peripherals.

# ProgramFPGAFromBIN

| ΑΡΙ  | Code                                                                              |
|------|-----------------------------------------------------------------------------------|
| C++  | void ceDevice::ProgramFPGAFromBIN(const char *pszFileName)                        |
| С    | CE_RESULT ProgramFPGAFromBIN(CE_DEVICE_HANDLE Handle, const char<br>*pszFileName) |
| .NET | void ceDevice.ProgramFPGAFromBIN(string sFileName)                                |

Program the FPGA with the Xilinx tools .bin file indicated by the filename parameter. Calls ResetFPGA() subsequently.

#### **ProgramFPGAFromMemory**

| ΑΡΙ  | Code                                                                                                           |
|------|----------------------------------------------------------------------------------------------------------------|
| C++  | void ceDevice::ProgramFPGAFromMemory(const unsigned char *pszData, unsigned int uiSize)                        |
| С    | CE_RESULT ProgramFPGAFromMemory(CE_DEVICE_HANDLE Handle, const<br>unsigned char *pszData, unsigned int uiSize) |
| .NET | void ceDevice.ProgramFPGAFromMemory(byte[] Data, uint Size)                                                    |

Program FPGA with a given array created with UDKLab. This was previously done using fpgaconv.

#### **ProgramFPGAFromMemoryZ**

| API  | Code                                                                                                            |
|------|-----------------------------------------------------------------------------------------------------------------|
| C++  | void ceDevice::ProgramFPGAFromMemoryZ(const unsigned char *pszData, unsigned int uiSize)                        |
| С    | CE_RESULT ProgramFPGAFromMemoryZ(CE_DEVICE_HANDLE Handle, const<br>unsigned char *pszData, unsigned int uiSize) |
| .NET | void ceDevice.ProgramFPGAFromMemoryZ(byte[] Data, uint Size)                                                    |

Same as ProgramFPGAFromMemory(), except the design data is compressed.

# SetTimeOut

| API  | Code                                                                    |
|------|-------------------------------------------------------------------------|
| C++  | void ceDevice::SetTimeOut(unsigned int uiTimeOutMS)                     |
| С    | CE_RESULT SetTimeOut(CE_DEVICE_HANDLE Handle, unsigned int uiTimeOutMS) |
| .NET | void ceDevice.SetTimeOut(uint uiTimeOutMS)                              |

Set the timeout in milliseconds for data transfers. If a transfer is not completed inside this timeframe, the API generates a timeout error.

# EnableBurst

| API  | Code                                                                  |
|------|-----------------------------------------------------------------------|
| C++  | void ceDevice::EnableBurst(bool bEnable)                              |
| С    | CE_RESULT EnableBurst(CE_DEVICE_HANDLE Handle, unsigned int uiEnable) |
| .NET | void ceDevice.EnableBurst(bool bEnable)                               |

(PCI only) Enable bursting in transfer, which frees the shared address / data bus between PCI(e) chip and FPGA by putting addresses on the bus frequently only.

# UDKLab

# Introduction

UDKLab is a replacement of the former cesys-Monitor, as well as cesys-Lab and fpgaconv. It is primary targeted to support FPGA designers by offering the possibility to read and write values from and to an active design. It can further be used to write designs onto the device's flash, so FPGA designs can load without host intervention. Additionally, designs can be converted to C/C++ and C# arrays, which allows design embedding into an application.

## The main screen

The following screen shows an active session with an EFM01 device. The base view is intended to work with a device, while additional functionality can be found in the tools menu.

The left part of the screen contains the device initialization details, needed to prepare the FPGA with a design (or just a reset if loaded from flash), plus optional register writes for preparation of peripheral components.

The right side contains elements for communication with the FPGA design:

- Register read and write, either by value or bit-wise using checkboxes.
- Live update of register values.
- Data areas (like RAM or Flash) can be filled from file or read out to file.
- Live view of data areas.
- More on these areas below.

| UDK-Lab 1.0 - [EFM01@roothubp0] | and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                |                                                                                                                                                               |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device Project Tools Info       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                                                                                                                               |
| ् 🗅 🖴 🖶 🚨 👌                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                                                                                                                               |
| Device Project Tools Info       | GPIO DE Bank0 => 0x00100008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Block RAM => 0x0000000                                                                                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                         |
|                                 | Image: Hex:     00200000     Dec:     15728640       Image: Hex:     0000000     Image: Hex:     00000000       Image: Hex:     00000000     Dec:     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00200018 30 0<br>0020022 30 0<br>00200028 30 0<br>00200033 30 0<br>00200038 30 0<br>00200048 30 0<br>00200048 30 0 | 1 20 01 00 00 31 e5<br>1 c0 01 01 c2 20 33<br>0 c0 01 00 00 00 00<br>0 80 01 00 00 00 05<br>0 20 01 00 00 00 00<br>0 80 01 00 00 00 01<br>0 40 00 50 01 14 9a |
| Start Sequence                  | Read Write Auto      H:      Lo:      Lo: |                                                                                                                    |                                                                                                                                                               |

Figure 12: UDKLab Main Screen

# Using UDKLab

After starting UDKLab, most of the UI components are disabled. They will be enabled at the point they make sense. As no device is selected, only device independent functions are available:

- The FPGA design array creator
- The option to define USB Power-On behavior
- Info menu contents

All other actions require a device, which can be chosen via the device selector which pops up as separate window:

| WDK-Lab 1.0 - [-]         |                                                                |
|---------------------------|----------------------------------------------------------------|
| Device Project Tools Info |                                                                |
|                           |                                                                |
|                           | Add Add                                                        |
| +                         | Add new regis 1 Choose device selector.                        |
| <ul> <li></li></ul>       | 2 Select device to work with.                                  |
|                           | Confirm selection (same as double click on #2).                |
|                           | 4 Re-Trigger device enumeration (i.e. after device (un-)plug). |
|                           |                                                                |
|                           | Select device                                                  |
|                           | USBV#@coothubp1<br>EFM01@roothubp0                             |
|                           |                                                                |
|                           |                                                                |
|                           |                                                                |
|                           |                                                                |
|                           |                                                                |
|                           |                                                                |
|                           |                                                                |
|                           |                                                                |
|                           |                                                                |
| Start Sequence            |                                                                |

Figure 13: Device selection flow

If the device list is not up to date, clicking Re-Enum will search again. A device can be selected by either double clicking on it or choosing *OK*.

**Important:** Opening the device selector again will internally re-initialize the underlying API, so active communication is stopped and the right panel is disabled again (more on the state of this panel below).

After a device has been selected, most UI components are available:

- FPGA configuration
- FPGA design flashing [if device has support]
- Project controls
- Initializer controls (Related to projects)

The last disabled component at this point is the content panel. It is enabled if the initialization sequence has been run. The complete flow to enable all UI elements can be seen below:

| UDK-Lab 1.0 - [EFM01@roothubp0] | Bock RAM → 1 Select device.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tialize sequence. |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                 | CONDUDUD → CONDUCUDUD      Hex: 00000000 Dec: 0      Read Write Auto     CPIO CE Bank0 → 0x00100008      Hex: 0000000 Dec: 0      Read Write Auto     CPIO Eank0 → 0x00100008      Hi: 0000000 Dec: 0      COULT COULD COULD COULT COULD C |                   |
| Start Sequence 3                | Hex: 0000000 Dec: 0     Read Write Auto ℓ     Hi:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |

Figure 14: Prepare to work with device

# **FPGA** configuration

Choosing this will pop up a file selection dialog, allowing to choose the design for download. If the file choosing isn't canceled, the design will be downloaded subsequent to closing the dialog.

# FPGA design flashing

This option stores a design into the flash component on devices that have support for it. The design is loaded to the FPGA after device power on without host intervention. How and under which circumstances this is done can be found in the hardware description of the corresponding device. The following screen shows the required actions for flashing:



Figure 15: Flash design to device

# Projects

Device communication is placed into a small project management. This reduces the actions from session to session and can be used for simple service tasks too. A projects stores the following information:

- Device type it is intended to
- Initializing sequence
- Register list
- Data area list

Projects are handled like files in usual applications, they can be loaded, saved, new

projects can be created. Only one project can be active in one session.

## Initializing sequence

The initializing sequence is a list of actions that must be executed in order to work with the FPGA on the device. (The image shows an example initializing list of an EFM01, loading our example design and let the LED blink for some seconds):



Figure 16: Initializing sequence

# Sequence contents

UDKLab supports the following content for initialization:

- FPGA programming
- FPGA reset
- Register write
- Sleep

Without a design, an FPGA does nothing, so it must be loaded before usage. This can be ensured in two ways:

- Download design from host
- Load design from flash (supported on EFM01, USBV4F and USBS6)

So the first entry in the initialize list must be a program entry or, if loaded from flash, a reset entry (To sync communication to the host side). Subsequent to this, a mix of register write and sleep commands can be placed, which totally depends on the underlying FPGA design. This can be a sequence of commands sent to a peripheral component or to fill data structures with predefined values. If things get complexer, i.e. return values must be checked, this goes beyond the scope of the current UDKLab implementation and must be solved by a host process.

To control the sequence, the buttons on the left side can be used. In the order of appearance, they do the following (also indicated by tooltips):

- Clear complete list
- Add new entry (to the end of the list)
- Move currently selected entry on position up
- · Move currently selected entry on position down
- Remove currently selected entry

All buttons should be self explanatory, but here's a more detailed look on the add entry, it opens the following dialog:

| Reset FPGA     No options |                  |
|---------------------------|------------------|
| Reset FPGA                |                  |
| No options                |                  |
|                           |                  |
| Write register value      |                  |
| Register: 0x0000000       | Value: 0x0000000 |
| Sleep                     |                  |
| O Amount: 10              | ms               |
|                           |                  |

Figure 17: Add new initializing task

One of the four possible entries must be selected using the radio button in front of it. Depending on the option, one or two parameters must be set, *OK* adds the new action to initializer list.

#### Sequence start

The button sitting below the list runs all actions from top to bottom. In addition to this, the remaining UI components, the content panel, will be enabled, as UDKLab expects a working communication at this point. The sequence can be modified an started as often as wished.

#### Content panel

The content panel can be a visual representation of the FPGA design loaded during initialization. It consists of a list of registers and data areas, which can be visit and modified using UDKLab. The view is split into two columns, while the left part contains the registers and the right part all data area / block entries.

| UDK-Lab 1.0 - [EFM01@roothubp0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device Project Tools Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ् 🗅 🖴 🖶 💾 👌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Initialize         Image: Prog(C:\ devel projects\ cesys\uddk\ trunk efm01_top.bn()         Image: Projects\ devel projects\ cesys\ trunk efm01_top.bn()         Image: Projects\ trunk efm01_top.bn()         Image: Projecs\ trunk efm01_t | CPIO CE Bank0 →> 0x0010008 | Block RAM => 0x00000000         Address Range: 0x00000000 - 0x000007ff         2 KByte (0 MB), Algament: 4 byte         Image: 0x00000000 = 0x00000000 - 0x000007ff         Image: 0x0000000 = 0x000000 = 0x000000 = 0x0000000         Image: 0x0000000 = 0x00000 = 0x00000 = 0x000000         Image: 0x0000000 = 0x00000 = 0x0000 = 0x000000         Image: 0x0000000 = 0x000000 = 0x000000         Image: 0x00000000 = 0x000000         Image: 0x000000000         Image: 0x00000000         Image: 0x0000000000         Image: 0x00000000         Image: 0x00000000         Image: 0x000000000         Image: 0x00000000         Image: 0x00000000000000000000000000000000000 |

Figure 18: Content panel

## Register entry

A register entry can be used to communicate with a 32 bit register inside the FPGA. In UDKLab, a register consists of the following values:

- Address
- Name
- Info text

The visual representation of one register can be seen in the following image:



Figure 19: Register panel

The left buttons are responsible for adding new entries, move the entry up or down and removing the current entry, all are self explanatory. The header shows it's mapping name as well as the 32 bit address. The question mark in the lower right will show a tooltip if the mouse is above it, which is just a little help for users. Both input fields can be used to write in a new value, either hex- or decimal or contain the values if they are read from FPGA design. The checkboxes represent one bit of the current value. Clicking the *Read* button will read the current value from FPGA and update both text boxes as well as the checkboxes, which is automatically done every 100ms if the *Auto* button is active. Setting register values inside the FPGA is done in a similar way, clicking the *Write* button writes the current values to the device. One thing needs a bit attention here:

Clicking on the checkboxes implicitly writes the value without the need to click on the *Write* button !

## Data area entry

A data area entry can be used to communicate with a data block inside the FPGA, examples are RAM or flash areas. Data can be transfered from and to files, as well as displayed in a live view. An entry constits of the following data:

- Address
- Name
- Data alignment
- Size
- Read-only flag

The visual representation is shown below.

| Block RAM => 0x0000000 |                                         |  |  |  |
|------------------------|-----------------------------------------|--|--|--|
| +                      | Address Range: 0x00000000 - 0x000007ff  |  |  |  |
|                        | 2 kByte (0 MB), Alignment: 4 byte       |  |  |  |
| •                      | Device To File File To Device Live View |  |  |  |
|                        |                                         |  |  |  |
|                        |                                         |  |  |  |
|                        |                                         |  |  |  |
|                        |                                         |  |  |  |
|                        |                                         |  |  |  |
|                        |                                         |  |  |  |
|                        | · · · · · · · · · · · · · · · · · · ·   |  |  |  |

Figure 20: Data area panel

Similar to the register visualization, the buttons on the right side can be used to add, move and remove data area panels. The header shows the name and the address followed by the data area details. Below are these buttons:

- Device To File: The complete area is read and stored to the file which is defined in the file dialog opening after clicking the button.
- File To Device: This reads the file selected in the upcoming file dialog and stores the contents in the data area, limited by the file size or data area size. This button is not shown if the Read-only flag is set.
- Live View: If this button is active, the text view below shows the contents of the area, updated every 100 ms, the view can be scrolled, so every piece can be visited.

# Additional Information

# References

- CESYS PCIeV4BASE software API and sample code
- PLX PEX8311 PCIe controller data book (PEX\_8311AA\_Data\_Book\_v0.90\_10Apr06.pdf)
- Specification for the "WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores" Revision B.3, released September 7, 2002 (wbspec\_b3.pdf)
- Dual 8 Bit transceiver data sheet (74FCT162245T\_Datasheet.pdf)

# Links

- <u>http://www.vhdl-online.de/</u>
- Informations about the VHDL language, including a tutorial, a language reference, design hints for describing state machines, synthesis and the synthesizable language subset
- http://www.opencores.org/projects.cgi/web/wishbone/
- Home of the WISHBONE standard
- http://www.plxtech.com/
- Provider of the PLX PEX8311 PCIe controller
- http://www.xilinx.com/
- Provider of the Virtex-4<sup>™</sup> FPGA and the free FPGA development environment ISE WebPACK

# Data Rates

PCIe and DDR2 SDRAM technology are build for achieving very high data transfer rates. The theoretical maximum values of these data rates differ from real life applications. This chapter provides information about measured data rates over PLX local bus and DDR2 memory bus connected to FPGA balls. There can be no "one-for-all" architecture to process huge amounts of data in high performance applications. So normally a lot of optimization has to be done on software and FPGA design side. Buffer sizes, buffer thresholds, prefetch logic and latency of peripherals have great influence on data throughput, especially in data streaming/bursting applications.

The FPGA is always a slave at PLX local bus. A special design was used for benchmarking, which responds to PLX local bus master requests with zero cycle latency. The FPGA handles the local bus protocol and acts as a endless data source/sink. The local bus clock frequency is 66 MHz.

| PCIe Benchmark    |                |  |  |  |
|-------------------|----------------|--|--|--|
| Direction         | Result         |  |  |  |
| PCIe => Local Bus | 125 MBytes/sec |  |  |  |
| Local Bus => PCle | 135 MBytes/sec |  |  |  |

The hardware interface FPGA/DDR2 is designed to work together with IP-cores generated by the Xilinx MIG tool. The memory controller has a FIFO-like interface for addresses/commands and data. The benchmark FPGA design generates a neverending datastream with consecutive addresses for write accesses and neverending data requests with consecutive addresses for read accesses. The data direction is software defined. Addresses, data and commands are written as soon as there is space available in the memory controller's FIFO interface.

The memory controller has been generated using Xilinx MIG Tool version 1.72, the DDR2 burst length has been set to four and the selected device has been MT8HTF6464HDY-40E. The DDR2 clock frequency is 200 MHz.

| DDR2 SODIMM Benchmark |                  |  |  |  |
|-----------------------|------------------|--|--|--|
| Direction             | Result           |  |  |  |
| FPGA => DDR2          | 3 007 MBytes/sec |  |  |  |
| DDR2 => FPGA          | 3 038 MBytes/sec |  |  |  |

Host system configuration:

| Operating system: | Windows XP <sup>™</sup> Pro 32 Bit, SP2        |
|-------------------|------------------------------------------------|
| PCIe driver:      | PLX Technology device driver version 5.0       |
| Mainboard:        | Asus P5B-E, Intel P965 Chipset                 |
| CPU:              | Intel Core2 Duo 6320, 2 x 1866 MHz             |
| RAM:              | 2 GByte PC2-5300 CL5, Kingston KVR667D2N5K2/2G |
| HDD:              | 250 GByte SATA, WDC WD2500YD-01NVB1            |
| Graphics adapter: | Asus EN7300TC512                               |

# PIBIO Etch length report

In most cases it is not necessary to consider etch lengths on *PCIeV4BASE* when designing user specific Plug-In boards. For the rare cases, where timing margins are critical or nets have to be length matched, the following chart gives information about etch lengths between FPGA I/O ball and respective PIB pin on connector CON4.

| PIBIO etch length report |          |          |                  |                 |  |
|--------------------------|----------|----------|------------------|-----------------|--|
| PIB pin                  | Net name | FPGA I/O | Etch length (mm) | Comment         |  |
| 1                        | PIB_IO0  | AB17     | 82,743           | Bank4, L3P GC   |  |
| 2                        | PIB_IO1  | U21      | 77,571           | Bank 9, L29N    |  |
| 3                        | PIB_IO2  | U22      | 79,092           | Bank 9, L29P    |  |
| 4                        | GND      |          |                  |                 |  |
| 5                        | PIB_IO3  | T19      | 74,304           | Bank 9, L31N    |  |
| 6                        | PIB_IO4  | U20      | 73,349           | Bank 9, L31P    |  |
| 7                        | PIB_IO5  | R23      | 76,405           | Bank 9, L22N    |  |
| 8                        | PIB_IO6  | R24      | 76,412           | Bank 9, L22P    |  |
| 9                        | PIB_IO7  | R21      | 76,579           | Bank 9, L23N    |  |
| 10                       | PIB_IO8  | R22      | 84,736           | Bank 9, L23P    |  |
| 11                       | PIB_IO9  | T23      | 67,348           | Bank 9, L24N CC |  |
| 12                       | PIB_IO10 | T24      | 67,579           | Bank 9, L24P CC |  |
| 13                       | PIB_IO11 | R20      | 66,617           | Bank 9, L25P CC |  |
| 14                       | PIB_IO12 | R19      | 70,156           | Bank 9, L25N CC |  |
| 15                       | PIB_IO13 | P19      | 69,738           | Bank 9, L21N    |  |
| 16                       | PIB_IO14 | P20      | 66,467           | Bank 9, L21P    |  |
| 17                       | PIB_IO15 | N19      | 69,713           | Bank 9, L9N CC  |  |
| 18                       | PIB_IO16 | M19      | 82,691           | Bank 9, L9P CC  |  |
| 19                       | PIB_IO17 | K26      | 58,770           | Bank 9, L8P CC  |  |
| 20                       | PIB_IO18 | K25      | 62,150           | Bank 9, L8N CC  |  |
| 21                       | PIB_IO19 | M23      | 63,851           | Bank 9, L14P    |  |
| 22                       | PIB_IO20 | M22      | 62,141           | Bank 9, L14N    |  |
| 23                       | GND      |          |                  |                 |  |
| 24                       | PIB_IO21 | M21      | 60,650           | Bank 9, L13P    |  |
| 25                       | PIB_IO22 | M20      | 74,899           | Bank 9, L13N    |  |
| 26                       | PIB_IO23 | L21      | 58,991           | Bank 9, L6P     |  |
| 27                       | PIB_IO24 | L20      | 69,975           | Bank 9, L6N     |  |
| 28                       | PIB_IO25 | L19      | 71,487           | Bank 9, L5P     |  |
| 29                       | PIB_IO26 | K20      | 59,517           | Bank 9, L5N     |  |
| 30                       | PIB_IO27 | K22      | 53,493           | Bank 9, L3P     |  |
| 31                       | PIB_IO28 | K21      | 53,000           | Bank 9, L3N     |  |
| 32                       | PIB_IO29 | J21      | 59,164           | Bank 9, L1P     |  |
| 33                       | PIB_IO30 | J20      | 71,060           | Bank 9, L1N     |  |
| 34                       | PIB_IO31 | F24      | 53,008           | Bank 5, L24P CC |  |

| PIBIO etch length report |           |          |                  |                    |  |
|--------------------------|-----------|----------|------------------|--------------------|--|
| PIB pin                  | Net name  | FPGA I/O | Etch length (mm) | Comment            |  |
| 35                       | PIB_IO32  | F23      | 56,102           | Bank 5, L24N CC    |  |
| 36                       | PIB_IO33  | E23      | 63,894           | Bank 5, L18P       |  |
| 37                       | PIB_IO34  | E22      | 64,332           | Bank 5, L18N       |  |
| 38                       | PIB_IO35  | D24      | 54,130           | Bank 5, L16P       |  |
| 39                       | PIB_IO36  | C24      | 144,104          | Bank 5, L16N       |  |
| 40                       | PIB_IO37  | D23      | 54,288           | Bank 5, L21P       |  |
| 41                       | PIB_IO38  | C23      | 50,959           | Bank 5, L21N       |  |
| 42                       | PIB_IO39  | A21      | 54,098           | Bank 5, L15N       |  |
| 43                       | PIB_IO40  | A22      | 47,495           | Bank 5, L15P       |  |
| 44                       | PIBCLK    |          |                  | 66MHz clock signal |  |
| 45                       | GND       |          |                  |                    |  |
| 46                       | PIB_IO41  | A23      | 48,579           | Bank 5, L8N CC     |  |
| 47                       | PIB_IO42  | A24      | 49,467           | Bank 5, L8P CC     |  |
| 48                       | +3,3 Volt |          |                  |                    |  |
| 49                       | +3,3 Volt |          |                  |                    |  |
| 50                       | +3,3 Volt |          |                  |                    |  |
| 51                       | PIB_IO43  | C25      | 29,844           | Bank 5, L20N       |  |
| 52                       | PIB_IO44  | C26      | 30,034           | Bank 5, L20P       |  |
| 53                       | PIB_IO45  | D25      | 31,010           | Bank 5, L25N CC    |  |
| 54                       | PIB_IO46  | D26      | 29,649           | Bank 5, L25P CC    |  |
| 55                       | PIB_IO47  | E24      | 40,062           | Bank 5, L27N       |  |
| 56                       | PIB_IO48  | E25      | 42,733           | Bank 5, L27P       |  |
| 57                       | PIB_IO49  | E26      | 32,405           | Bank 5, L29N       |  |
| 58                       | PIB_IO50  | F26      | 33,051           | Bank 5, L29P       |  |
| 59                       | PIB_IO51  | G23      | 40,754           | Bank 5, L28N       |  |
| 60                       | PIB_IO52  | G24      | 39,907           | Bank 5, L28P       |  |
| 61                       | PIB_IO53  | H23      | 58,906           | Bank 5, L30N       |  |
| 62                       | PIB_IO54  | H24      | 72,742           | Bank 5, L30P       |  |
| 63                       | PIB_IO55  | G25      | 41,899           | Bank 5, L31N       |  |
| 64                       | PIB_IO56  | G26      | 57,826           | Bank 5, L31P       |  |
| 65                       | PIB_IO57  | H25      | 47,961           | Bank 5, L32N       |  |
| 66                       | PIB_IO58  | H26      | 56,948           | Bank 5, L32P       |  |
| 67                       | PIB_IO59  | J22      | 56,817           | Bank 9, L2N        |  |
| 68                       | PIB_IO60  | J23      | 57,026           | Bank 9, L2P        |  |
| PIBIO etch length report |          |          |                  |              |  |  |  |
|--------------------------|----------|----------|------------------|--------------|--|--|--|
| PIB pin                  | Net name | FPGA I/O | Etch length (mm) | Comment      |  |  |  |
| 69                       | PIB_IO61 | J25      | 42,968           | Bank 9, L4N  |  |  |  |
| 70                       | PIB_IO62 | J26      | 40,162           | Bank 9, L4P  |  |  |  |
| 71                       | PIB_IO63 | K23      | 69,578           | Bank 9, L7N  |  |  |  |
| 72                       | PIB_IO64 | K24      | 50,584           | Bank 9, L7P  |  |  |  |
| 73                       | PIB_IO65 | L23      | 48,473           | Bank 9, L10N |  |  |  |
| 74                       | PIB_IO66 | L24      | 53,364           | Bank 9, L10P |  |  |  |
| 75                       | PIB_IO67 | M24      | 48,694           | Bank 9, L11N |  |  |  |
| 76                       | PIB_IO68 | M25      | 45,996           | Bank 9, L11P |  |  |  |
| 77                       | PIB_IO69 | L26      | 51,158           | Bank 9, L12P |  |  |  |
| 78                       | PIB_IO70 | M26      | 47,973           | Bank 9, L12N |  |  |  |
| 79                       | PIB_IO71 | N20      | 65,031           | Bank 9, L17N |  |  |  |
| 80                       | PIB_IO72 | N21      | 54,915           | Bank 9, L17P |  |  |  |
| 81                       | PIB_IO73 | N22      | 56,137           | Bank 9, L16N |  |  |  |
| 82                       | PIB_IO74 | N23      | 54,690           | Bank 9, L16P |  |  |  |
| 83                       | PIB_IO75 | N24      | 60,018           | Bank 9, L15N |  |  |  |
| 84                       | PIB_IO76 | N25      | 55,095           | Bank 9, L15P |  |  |  |
| 85                       | PIB_IO77 | P23      | 61,166           | Bank 9, L19P |  |  |  |
| 86                       | PIB_IO78 | P22      | 63,766           | Bank 9, L19N |  |  |  |
| 87                       | PIB_IO79 | P25      | 59,243           | Bank 9, L18P |  |  |  |
| 88                       | PIB_IO80 | P24      | 60,737           | Bank 9, L18N |  |  |  |
| 89                       | PIB_IO81 | R26      | 59,402           | Bank 9, L20P |  |  |  |
| 90                       | PIB_IO82 | R25      | 63,008           | Bank 9, L20N |  |  |  |
| 91                       | PIB_IO83 | T21      | 62,649           | Bank 9, L30P |  |  |  |
| 92                       | PIB_IO84 | T20      | 66,250           | Bank 9, L30N |  |  |  |
| 93                       | PIB_IO85 | U23      | 67,624           | Bank 9, L27P |  |  |  |
| 94                       | PIB_IO86 | V23      | 63,089           | Bank 9, L27N |  |  |  |
| 95                       | PIB_IO87 | U25      | 67,634           | Bank 9, L28P |  |  |  |
| 96                       | PIB_IO88 | U24      | 65,147           | Bank 9, L28N |  |  |  |
| 97                       | PIB_IO89 | T26      | 76,830           | Bank 9, L26P |  |  |  |
| 98                       | PIB_IO90 | U26      | 66,616           | Bank 9, L26N |  |  |  |
| 99                       | PIB_IO91 | V26      | 71,907           | Bank 9, L32P |  |  |  |
| 100                      | PIB_IO92 | V25      | 74,963           | Bank 9, L32N |  |  |  |

## 78-pin HD-Sub Connector diagram

The following diagram links 100-pin PIB- to 78-pin HD-Sub connector.

|              | - Pin 97 | ► <u>5</u> 9                 | 20-  | Din 4   | Pin 5    |
|--------------|----------|------------------------------|------|---------|----------|
| FII1 90      | - Pin 95 |                              |      | FII14   | Pin 7 —  |
| —— Pin 94    | - Pin 93 |                              |      | Pin 6   | Pin 9 —  |
| Pin 92       | - Pin 91 | ►76<br>►56                   | 37   | Pin 8   | Pin 11   |
| Pin 90       | Dia 90   |                              | 36   | Pin 10  | Din 12   |
| Pin 88       | PIII 69  |                              | 35   | Pin 12  | PIII 13  |
| Pin 86       | Pin 87   | ► <u>73</u>                  | (15) | Pin 14  | Pin 15   |
| Pin 84       | Pin 85   | ► <u>53</u>                  |      | Pin 16  | Pin 17   |
| <br><br><br> | Pin 83   | ► <u>52</u>                  |      |         | Pin 19   |
|              | - Pin 81 | <b>-</b> (1)<br><b>-</b> (1) |      | Fin 10  | Pin 20   |
| Pin 80       | - Pin 79 |                              |      | Pin 21  | Pin 22   |
| —— Pin 78    | - Pin 68 | <b>►</b> 69<br><b>►</b> 49   |      | Pin 23  | Pin 24   |
| Pin 77       | Din 67   |                              | 29   | Pin 33  |          |
| Pin 76       | PIII 67  | ► <u>67</u>                  | 28   | Pin 34  | Pin 25   |
| Pin 75       | Pin 66   |                              | 27   | Pin 35  | Pin 26 — |
| Pin 74       | Pin 65   | <u>−</u><br><u>+</u> 46      |      | Pin 36  | Pin 27   |
| Din 73       | - Pin 64 |                              | 6    |         | Pin 28   |
|              | Pin 63   |                              | 5    | FIII 37 | Pin 29   |
| —— Pin 72    | - Pin 62 |                              |      | Pin 38  | Pin 30   |
| —— Pin 71    | - Pin 61 |                              | (3)  | Pin 39  | Pin 31   |
| Pin 70       | - Pin 60 |                              |      | Pin 40  | Pin 32   |
| Pin 69       |          |                              | 21   | Pin 41  | DO 000   |
|              | EARTH    | 40                           |      |         | PC GND   |
|              |          |                              |      |         |          |
|              |          |                              |      |         |          |

## Table of contents

## **Table of Contents**

| Copyright information                  | 2  |
|----------------------------------------|----|
|                                        |    |
| Overview                               | 3  |
| Summary of PCIeV4Base                  | 3  |
| Feature list                           | 3  |
| Hardware                               | 5  |
| Virtex-4 FPGA                          |    |
| SODIMM Memory module                   | 6  |
| PCI Express interface.                 | 6  |
| CESYS PIB slot                         | 7  |
| Board size                             | 8  |
| Connectors and FPGA pinout             | 9  |
| Clock signals                          |    |
| DDR PLLCLK                             |    |
| SODIMM socket                          |    |
| PIB signals and SUB-D connector        |    |
| Leds                                   |    |
| PCIe Controller local bus signals      |    |
| JTAG interface                         |    |
| FPGA design                            |    |
| Introduction                           | 28 |
| FPGA source code copyright information | 30 |
| FPGA source code license               |    |
| Disclaimer of warranty                 |    |
| Design "pciev4base"                    |    |
| Files and modules                      |    |
| src/wishbone.vhd:                      |    |
| src/pciev4base_top.vhd:                |    |
| src/wb syscon.vhd:                     |    |
| src/wb intercon.vhd:                   |    |
| src/wb ma plx.vhd:                     |    |
| src/wb_sl_bram.vhd:                    |    |
| src/wb_sl_gpio.vhd:                    |    |
| src/wb_sl_timer.vhd:                   |    |

| src/sl_ddr2.vhd:                                                    |    |
|---------------------------------------------------------------------|----|
| src/xil mig ddr2sodimm/:                                            |    |
| ddr2 addr fifo.vhd *.ngc *.xco, ddr2 ram2user fifo.vhd *.ngc *.xco, |    |
| ddr2_user2ram_fifo.vhd *.ngc *.xco:                                 | 33 |
| pciev4base.ise:                                                     | 33 |
| pciev4base.ucf:                                                     | 33 |
| Bus transactions                                                    |    |
| Local bus signals driven by the PLX PCIe controller:                |    |
| Local bus signals driven by the FPGA:                               |    |
| Local bus signal driven by the PLX PCI controller and the FPGA:     | 34 |
| WISHBONE signals driven by the master:                              |    |
| WISHBONE signals driven by slaves:                                  |    |
| Example:                                                            |    |
| PCIe interrupt                                                      |    |
| Design "performance_test"                                           |    |
| Files and modules                                                   |    |
| src/performance_test.vhd:                                           |    |
| performance_test.ise:                                               | 37 |
| performance_test.ucf:                                               | 37 |
| Bus transactions                                                    |    |
|                                                                     |    |
| Software                                                            | 39 |
| Introduction                                                        |    |
| Changes to previous versions                                        |    |
| Windows                                                             | 40 |
| Requirements                                                        |    |
| Driver installation                                                 |    |
| Build UDK                                                           |    |
| Prerequisites                                                       |    |
| Solution creation and build.                                        |    |
| Linux                                                               | 42 |
| Requirements                                                        | 42 |
| Drivers                                                             | 42 |
| USB                                                                 | 42 |
| PCI                                                                 |    |
| Build UDK                                                           |    |
| Prerequisites                                                       |    |
| Makefile creation and build                                         |    |
| Use APIs in own projects                                            |    |
| C++ API                                                             |    |
| Add project to UDK build.                                           |    |
| C API.                                                              |    |
| NET API                                                             |    |

| API Functions in detail          | 47        |
|----------------------------------|-----------|
| API Error handling               | 47        |
| C++ and .NET API                 | 47        |
| <u>C API</u>                     | 47        |
| Methods/Functions                | 48        |
| Device enumeration               | 49        |
| Methods/Functions                |           |
| Information gathering            |           |
| Methods/Functions                |           |
| Using devices                    |           |
| Methods/Functions                |           |
| UDKLab                           |           |
| Introduction                     | <u>59</u> |
| The main screen                  | <u>60</u> |
| Using UDKLab                     | <u>61</u> |
| FPGA configuration               |           |
| FPGA design flashing             |           |
| Projects                         |           |
| Initializing sequence            | <u>64</u> |
| Content panel                    | <u>66</u> |
|                                  |           |
| Additional Information           | <u>69</u> |
| References                       |           |
| Links                            | 69        |
| Data Bates                       | 69        |
| Dun Nuco.                        |           |
| PIBIO Etch length report.        | /0        |
| 78-pin HD-Sub Connector diagram. | 74        |
|                                  |           |
| Table of contents                |           |