
EFM01

V 1.1 June 29, 2010 User Manual C1050-4107

SPARTAN-3ETM FPGA module with USB2.0,
SPI FLASH and JTAG interface.

Order number: C1050-4107

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -1- preliminary

http://www.cesys.com/

Copyright information

Copyright © 2010 CESYS GmbH. All Rights Reserved. The information in this document is
proprietary to CESYS GmbH. No part of this document may be reproduced in any form or
by any means or used to make derivative work (such as translation, transformation or
adaptation) without written permission from CESYS GmbH.

CESYS GmbH provides this documentation without warranty, term or condition of any kind,
either express or implied, including, but not limited to, express and implied warranties of
merchantability, fitness for a particular purpose, and non-infringement. While the
information contained herein is believed to be accurate, such information is preliminary,
and no representations or warranties of accuracy or completeness are made. In no event
will CESYS GmbH be liable for damages arising directly or indirectly from any use of or
reliance upon the information contained in this document. CESYS GmbH will make
improvements or changes in the product(s) and/or program(s) described in this
documentation at any time.

CESYS GmbH retains the right to make changes to this product at any time, without notice.
Products may have minor variations to this publication, known as errata. CESYS GmbH
assumes no liability whatsoever, including infringement of any patent or copyright, for sale
and use of CESYS GmbH products.

CESYS GmbH and the CESYS logo are registered trademarks.

All product names are trademarks, registered trademarks, or service marks of their
respective owner.

 ⇒ Please check www.cesys.com to get the latest version of this document.

CESYS Gesellschaft für angewandte Mikroelektronik mbH

Zeppelinstrasse 6a

D – 91074 Herzogenaurach

Germany

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -2- preliminary

http://www.cesys.com/
http://www.cesys.com/

Overview

Summary of EFM01

The Embedded FPGA Module EFM 01 is a very small low-cost module with SPARTAN-3E
FPGA and USB 2.0 Interface. 50 I/O balls of the FPGA are available on standard 0,1 inch
headers. It offers multiple configuration options and can also be used without the USB
interface.

Feature list

Form factor Module, 45x30x15mm
XILINX SPARTAN-3ETM XC3S500E-4CPG132C
USB2.0 Controller CYPRESSTM CY7C68013A
FPGA configuration Using USB2.0, JTAG or SPI-Flash
Expansion connectors Two 2x17-Pin standard RM2.54mm headers
Clock Onboard 48MHz clock signal, external clock sources possible.
Example code Sample VHDL and C++ code can be used as starting point for user

designs.

Included in delivery

The standard delivery, order no. C1050-4107, includes:

• One EFM01
• One USB cable 1,5m
• One CD-ROM containing the user's manual (English), drivers, libraries, tools and

example source code.

All parts are ROHS compliant.

Single modules and very low quantities can be ordered in this configuration only. OEM
customers may have a different scope of supply based on individual agreements. If you
have questions, please call.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -3- preliminary

http://www.cesys.com/

Hardware

SPARTAN-3E FPGA

XC3S500E-4CPG132C FPGA features:
Configurable logic blocks (CLB) 1,164

Equivalent logic cells 10,476

Slices 4,656

RAM16 / SRL16 4,656

Max distributed RAM 74,496

For details of the SPARTAN -3ETM FPGA device, please look at the data sheet at:
http://direct.xilinx.com/bvdocs/publications/ds312.pdf

Module size

EFM01 is sized as small as 43x28mm. So even in systems where space is limited it is
possible to implement a fast USB2.0 connection with only little effort.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -4- preliminary

Figure 1: EFM01 block diagram

XILINX
SPARTAN-3E

XC3S500EJTA
G

4MBit
SPI

FLASH CYPRESS
CY7C68013A

U
S

B
2.

0

48MHz

24MHz

34 PIN EXPANSION CONNECTOR

34 PIN EXPANSION CONNECTOR

http://www.cesys.com/
http://direct.xilinx.com/bvdocs/publications/ds312.pdf

Connectors and FPGA pinout

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -5- preliminary

Figure 2: EFM01 Top View

2

J6

1

Figure 3: EFM01 Bottom View

J 3

J 4

1

2

1

2

http://www.cesys.com/

Powering EFM01

There are two ways to power EFM01. First, EFM01 may be used bus-powered without the
need of any external power supply other than USB. In this mode J3,PIN7 must connect to
J3,PIN8. If EFM01 is run bus-powered, 3.3VCCO on J3,PIN21 can source up to 500mA,
but keep in mind that USB power supply current is limited depending on which system is
used as host and may even be less than 500mA in case of some laptops. 5VUSB supply
on J3,Pin8 can be used to power external devices up to the limits of the used USB2.0 host
interface. NEVER connect external voltages to 5VUSB, as this may result in serious
damage of the attached USB2.0 host interface.

Modes of operation
Mode J3,PIN7 J3,PIN8 3.3VCCO limit

Bus- powered Connect to J3,Pin8 Connect to J3,Pin7 500 mA

Self- powered External 5V supply Must be left floating 1000 mA

Secondly, it is possible to use EFM01 self-powered if the attached USB2.0 host interface
should not be used as power supply or if USB2.0 is not connected at all. In this case an
external 5V power supply must connect to J3, PIN7, while J3,PIN8 must be left floating. If
USB2.0 is not used, J4,PIN18 “PWR_ENA” must be driven HIGH externally to enable
power-up of the onboard power supplies of the FPGA. If EFM01 is run self-powered,
current supplied on J3,PIN21 (3.3VCCO) mainly is limited by the external power supply, but
should not exceed 1000mA.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -6- preliminary

Figure 4: EFM01 Power scheme

J3,Pin 8
5VUSB

J3, Pin 7
5VDD

FPGAFPGA
POWERPOWERUSB

connector

Switch

3.3V
Regulator

3.3V
Regulator
1A max.

J4, Pin 18
PWR_ENA

USB
PWR_ENA

1

J3, Pin 21
3.3VCCO

FX2FX2
POWERPOWER

http://www.cesys.com/

EFM01 configuration

Configuration of EFM01 can be accomplished in several ways: JTAG, FLASH or USB. The
default configuration mode is booting from SPI FLASH. After powering on the FPGA,
EFM01 always tries to configure itself from the attached FLASH using SPI Master mode. If
no valid design is stored in the SPI FLASH the FPGA has to be configured via JTAG or
USB. For further information on configuration via USB please take a look at chapter C.
JTAG configuration is supported at any time after the FPGA is properly powered on. For
downloading designs via JTAG ISE WebPACK1 from XILINXTM is recommended. The tool
can be downloaded from XILINX web page free of charge.

J6 JTAG connector
PIN Signal name FPGA IO Comment
1 TDI A2 Test Data In

2 TMS B14 Test Mode Select

3 TCK B13 Test Clock

4 TDO A14 Test Data Out

5 2.5VCCAUX -- Auxiliary supply voltage of the FPGA

6 GND -- Corresponding ground signal

For further information on the different configuration solutions for XILINXTM SPARTAN-3E
FPGA the reader is encouraged to take a look at the user guide UG332 on XILINXTM web
page.

How to store configuration data in SPI Flash

To allow configuration of the FPGA via onboard SPI Flash on power-up first an appropriate
configuration file has to be stored in the SPI Flash. There are several ways to accomplish
this.

Loading SPI Flash via USB

The easiest way to get data into SPI Flash surely is to use CESYS software UDKLab. With
the help of this easy to use tool raw binary FPGA configuration bitstreams (*.bin) can be
downloaded to onboard SPI Flash via USB. Further information about usage of UDKLab
can be found in Software Chapter.

SPI Flash Indirect Programming Using FPGA JTAG Chain

Since XilinxTM ISE WebPACK1 version 10.1 it is possible to configure SPI Flashes attached
to the FPGA via JTAG interface. Before starting to download a design to SPI Flash with

1 ISE WebPACK at the XILINX web page from

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -7- preliminary

http://www.cesys.com/
http://direct.xilinx.com/bvdocs/userguides/ug332.pdf
http://www.xilinx.com/ise/logic_design_prod/webpack.htm

iMPACT programming software it is necessary to generate the required *.mcs PROM file.
XilinxTM provides a good guide how to accomplish that using iMPACT or PROMGen
software tools in their Spartan-3 Generation Configuration User Guide UG332 in chapter
Master SPI Mode, Preparing an SPI PROM File. Select 4M SPI PROM Density when
asked. After creation of *.mcs file connect JTAG adapter to EFM01 JTAG connector J6 as
described in the spreadsheet above. Only 2.5V signaling levels are supported. Then
power-up EFM01. Be sure to also enable FPGA power-up. If external power supply is used
and no USB connection is available, driving PWR_ENA (J4,pin18) HIGH externally will
enable FPGA power supplies to ramp up. If Bus- powered mode is used it is necessary to
start a software tool like cesys-Monitor after plugging EFM01 to USB to enable FPGA
power-up. With XilinxTM parallel cable IV the led lights green if FPGA is powered on. With
EFM01 properly powered now start XilinxTM iMPACT programming tool and select
Boundary Scan mode. Follow the manual provided by XilinxTM in user guide UG332 chapter
Master SPI Mode, Indirect SPI Programming using iMPACT. Select M25P40 SPI Flash
PROM Type when asked.

SPI Flash
M25P40 FPGA

Connection
FPGA

IO
FPGA

Direction
Comment

D MOSI N2 Output Master SPI Serial Data Output

Q DIN N8 Input Master SPI Serial Data Input

S# CSO_B M2 Output Master SPI Chip Select Output

C CCLK N12 Output Configuration Clock

W# WP# -- Externally pulled HIGH

HOLD# HOLD# -- Externally pulled HIGH

SPI Flash Direct Programming using iMPACT

Out of the box Direct SPI Programming via XilinxTM download cable and iMPACT
programming software is not supported. But with the help of some tiny FPGA design which
only has to bypass SPI signals to external IO pins on connectors J3 and/or J4 it is possible
to access all needed SPI Flash pins. Connect JTAG adapter to external IO pins as
described in the following chart.

SPI Flash Direct Programming – necessary connections to JTAG cable
M25P40 FPGA Connection JTAG signal name

D MOSI TDI

Q DIN TDO

S# CSO_B TMS

C CCLK TCK

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -8- preliminary

http://www.cesys.com/
http://direct.xilinx.com/bvdocs/userguides/ug332.pdf
http://direct.xilinx.com/bvdocs/userguides/ug332.pdf

SPI Flash Direct Programming – necessary connections to JTAG cable
M25P40 FPGA Connection JTAG signal name

VCC 3.3VCCO VREF

GND GND GND

Make sure that 3.3VCCO (J3,pin21) power supply is connected to the JTAG adapter. Do
not forget to also enable FPGA power-up. If external power supply is used and no USB
connection is available, driving PWR_ENA (J4,pin18) HIGH externally will enable FPGA
power supplies to ramp up. If Bus- powered mode is used it is necessary to start a
software tool like cesys-Monitor after plugging EFM01 to USB to enable FPGA power-up.
With XilinxTM parallel cable IV the led lights green if FPGA is powered on. Before starting to
download a design to SPI Flash with iMPACT programming software it is necessary to
generate the required *.mcs PROM file. XilinxTM provides a good guide how to accomplish
that using iMPACT or PROMGen software tools in their Spartan-3 Generation
Configuration User Guide UG332 in chapter Master SPI Mode, Preparing an SPI PROM
File. Select 4M SPI PROM Density when asked. Now programming of SPI Flash can be
started by clicking Direct SPI Configuration from within iMPACT. Follow the manual
provided by XilinxTM in user guide UG332 chapter Master SPI Mode, Direct SPI
Programming using iMPACT. Select M25P40 SPI Flash PROM Type when asked.

Program SPI Flash using external microcontrollers

Similar to Direct SPI Flash Programming described in the previous section another method
of SPI Flash configuration is possible. Instead of using iMPACT software together with a
JTAG download cable, a small microcontroller could be used to address the SPI Flash. The
FPGA has to be configured with a small helper-design that bypasses SPI signals of the
Flash to external IO on connectors J3 and/or J4 which then can be driven by the
microcontroller. Bypassing should also be enabled in the design downloaded to the SPI
Flash or else an update of Flash contents is only possible after reconfiguration of the FPGA
with the small helper-design using another configuration method like USB or JTAG. Keep in
mind that with this procedure maximum clock frequency of SPI Flash may be degraded
due to pin-to-pin delays in the FPGA which depend on what pin pair is used and may lead
to intolerable phase difference. To stimulate the FPGA to reconfigure from SPI Flash it is
necessary to pull PROG_B pin (J4, Pin5) low for a short period of time. After releasing
PROG_B again, the FPGA will automatically start to configure itself from the attached
Flash.

External expansion connectors

On connectors J3 and J4 up to 50 general purpose FPGA IO are accessible. All IO banks
of the FPGA are configured for 3.3V signaling level. Additionally some configuration pins
are routed to these connectors to enable even more flexible use of EFM01.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -9- preliminary

http://www.cesys.com/
http://direct.xilinx.com/bvdocs/userguides/ug332.pdf
http://direct.xilinx.com/bvdocs/userguides/ug332.pdf

! IO on connectors J3 and J4 are directly connected to FPGA IO and therefore are only 3.3
Volt tolerant. NEVER apply voltages outside the interval [-0,2V..3,45V] as this may lead to
severe damage of FPGA and attached components.

J3 External expansion connector I
PIN Signal name FPGA IO Comment

1 GND --
2 EXT1_IO0 C12 IO

3 EXT1_IO1 F12 IO

4 EXT1_IO2 C11 IO*

5 EXT1_IO3 H3 IO, LHCLK7#

6 EXT1_IO4 A12 IO**

7 5VDD -- External 5V power supply may be connected at this pin.
ATTENTION: If no external power source is used, 5VUSB
MUST connect to 5VDD.

8 5VUSB -- 5V USB power supply output to power external logic
devices.
ATTENTION: Do not connect any external power supply.
ATTENTION: If no external power source is used, 5VUSB
MUST connect to 5VDD.

9 EXT1_IO5 G13 IO, RHCLK7##

10 EXT1_IO6 F3 IO, LHCLK0#

11 EXT1_IO7 H13 IO, RHCLK4##

12 GND --
13 EXT1_IO8 B12 IO**

14 EXT1_IO9 C2 IO

15 EXT1_IO10 F13 IO

16 EXT1_IO11 D2 IO

17 EXT1_IO12 D12 IO, LDC0, low during configuration

18 EXT1_IO13 C4 IO**

19 EXT1_IO14 A13 IO

20 EXT1_IO15 B11 IO

21 3.3VCCO -- 3.3 Volt power supply output. VCCO power supply for all
FPGA IO banks. May be used to optionally power external
logic devices.
ATTENTION: Do not connect any external power supply.

* IO for XC3S250E,XC3S500E, INPUT ONLY for XC3S100E
LHCLK inputs optionally clock the left-half of the SPARTAN-3E device
** IO for XC3S250E,XC3S500E, N.C. for XC3S100E
RHCLK inputs optionally clock the right-half of the SPARTAN-3E device

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -10- preliminary

http://www.cesys.com/

J3 External expansion connector I
PIN Signal name FPGA IO Comment
22 EXT1_IO16 D13 IO, HDC, high during configuration

23 EXT1_IO17 H12 IO; RHCLK5##

24 SYSCLK A10 GCLK4; System clock (48MHz) driven by onboard
oscillator.

25 EXT1_IO19 J14 IO, RHCLK3##

26 GND --
27 EXT1_IO20 L13 IO

28 EXT1_IO21 J12 IO, RHCLK1##

29 EXT1_IO22 M12 IO

30 EXT1_IO23 M10 IO**

31 EXT1_IO24 M9 IO**

32 EXT1_IO25 C14 IO, LDC1, low during configuration

33 GND --
34 EXT1_IO26 C13 IO, LDC2, low during configuration

J4 External expansion connector II
PIN Signal name FPGA IO Comment

1 GND --
2 EXT2_IO0 C5 IO

3 EXT2_IO1 G3 IO, LHCLK4#

4 EXT2_IO2 J3 IO

5 EXT_PROGB A1 PROG_B, Active Low asynchronous reset to configuration
logic of FPGA.
Internal 4.7kOhm pull-up. Leave open, if not used.

6 EXT2_IO4 H1 IO, LHCLK5#

7 EXT2_IO5 H2 IO, LHCLK6#, green LED

8 GND --
9 EXT2_IO6 G1 IO, LHCLK3#

10 EXT2_IO7 L1 IO

11 EXT2_IO8 F2 IO, LHCLK1#

12 EXT2_IO9 K3 IO*

13 DONE FPGA DONE pin. Low during configuration.

RHCLK inputs optionally clock the right-half of the SPARTAN-3E device
LHCLK inputs optionally clock the left-half of the SPARTAN-3E device
* IO for XC3S250E,XC3S500E, INPUT ONLY for XC3S100E

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -11- preliminary

http://www.cesys.com/

J4 External expansion connector II
PIN Signal name FPGA IO Comment
14 EXT2_IO10 L2 IO

15 EXT2_IO11 F1 IO, LHCLK2#

16 GND --
17 GND --
18 PWR_ENA If USB is not used, this pin must be driven HIGH externally

to power-up FGPA.
Internal 10kOhm pull-down. Leave open, if not used.

19 #Flash_Inhibit -- Active Low Flash Inhibit signal. Drive Low on power-up to
prevent FPGA configuration from SPI-Flash.
Internal 1kOhm pull-up. Leave open, if not used.

Do not drive Low constantly, as this signal is used as
#Reset- signal in USB applications.

20 EXT2_IO13 L3 IO

21 EXT2_IO14 M1 IO

22 EXT2_IO15 N9 IO**

23 EXT2_IO16 P11 IO*

24 EXT2_IO17 N10 IO**

25 EXT2_IO18 M13 IO

26 GND --
27 EXT2_IO19 J13 IO, RHCLK2##

28 EXT2_IO20 N14 IO

29 EXT2_IO21 L14 IO

30 EXT2_IO22 K13 IO

31 EXT2_IO23 G14 IO, RHCLK6##

32 EXT2_IO24 K14 IO, RHCLK0##

33 GND --
34 EXT2_IO25 F14 IO

! It is strongly recommended to check the appropriate data sheets of SPARTAN-3E devices
about special functionality IO like LHCLK, RHCLK, LDC, HDC ...

For details of the SPARTAN -3ETM FPGA device, please look at the data sheet at:
http://direct.xilinx.com/bvdocs/publications/ds312.pdf

** IO for XC3S250E,XC3S500E, N.C. for XC3S100E
* IO for XC3S250E,XC3S500E, INPUT ONLY for XC3S100E
RHCLK inputs optionally clock the right-half of the SPARTAN-3E device

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -12- preliminary

http://www.cesys.com/
http://direct.xilinx.com/bvdocs/publications/ds312.pdf

FPGA design

Cypress FX-2 LP and USB basics

Several data transfer types are defined in USB 2.0 specification. High-speed bulk transfer
is the one and only mode of interest to end users. USB transfers are packet oriented and
have a time framing scheme. USB packets consist of USB protocol and user payload data.
Payload could have a variable length of up to 512 bytes per packet. Packet size is fixed to
the maximum value of 512 bytes for data communication with CESYS EFM01 USB card to
achieve highest possible data throughput. USB peripherals could have several logical
channels to the host. The data source/sink for each channel inside the USB peripheral is
called the USB endpoint. Each endpoint can be configured as “IN”- (channel direction:
peripheral => host) or “OUT”-endpoint (channel direction: host => peripheral) from host
side perspective. CESYS EFM01 USB card supports two endpoints, one for each direction.
FX-2 has an integrated USB SIE (Serial Interface Engine) handling USB protocol and
transferring user payload data to the appropriate endpoint. So end users do not have to
care about USB protocol in their own applications. FX-2 endpoints are realized as 2 kB
buffers. These buffers can be accessed over a FIFO-like interface with a 16 bit tristate data
bus by external hardware. External hardware acts as a master, polling FIFO flags, applying
read- and write-strobes and transferring data. Therefore this FX-2 data transfer mechanism
is called “slave FIFO mode”. As already mentioned, all data is transferred in multiples of
512 bytes. External hardware has to ensure, that the data written to IN-endpoint is aligned
to this value, so that data will be transmitted from endpoint buffer to host. The 512 byte
alignment normally causes no restrictions in data streaming applications with endless data
transfers. Maybe it is necessary to fill up endpoint buffer with dummy data, if some kind of
host timeout condition has to be met. Another FX-2 data transfer mechanism is called
“GPIF (General Programmable InterFace) mode”. The GPIF engine inside the FX-2 acts as
a master to endpoint buffers, transferring data and presenting configurable handshake
waveforms to external hardware. CESYS USB card supports “slave FIFO mode” for data
communication only. “GPIF mode” is exclusively used for downloading configuration
bitstreams to FPGA.

Clocking FPGA designs

The 48 MHz SYSCLK oscillator is the only onboard clock source for the FPGA. It is used
as interface clock (IFCLK) between FX-2 slave FIFO bus and FPGA I/Os, too. So this clock
source must be used for data transfers to and from FPGA over USB! Appropriate timing
constraints can be found in “*.ucf”-files of design examples included in delivery.

It is strictly recommended to use a single clock domain whenever possible. Using a fully
synchronous system architecture often results in smaller, less complex and more
performant FPGA designs (compare XilinxTM white paper WP331 “Timing Closure/Coding
Guidelines”).

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -13- preliminary

http://www.cesys.com/
http://www.xilinx.com/support/documentation/white_papers/wp331.pdf

In FPGA designs with multiple clock domains asynchronous FIFOs have to be used for
transferring data from one clock domain to the other and comprehensive control signals
have to be resynchronized.

Other clock sources can be added internally by using Spartan-3ETM onchip digital clock
managers (DCMs) or externally by connecting clock sources to FPGA-I/Os. Recommended
I/Os are additionally labeled with “RHCLK<>” and “LHCLK<>”. A wide range of clock
frequencies can be synthesized with DCMs. For further details on DCMs please see
“Spartan-3 TM Generation FPGA User Guide UG331 ”, “Spartan-3E TM FPGA Family:
Complete Data Sheet DS312” and XilinxTM application note “Using Digital Clock Managers
(DCMs) in Spartan-3 TM FPGAs XAPP462 ”.

FX-2/FPGA slave FIFO connection

Only the logical behavior of slave FIFO interface is discussed here. For information about
the timing behavior like setup- and hold-times please see FX-2 datasheet
(cy7c68013a_8.pdf).

All flags and control signals are active low (postfix “#”). The whole interface is synchronous
to IFCLK. The asynchronous FIFO transfer mode is not supported.

• SLWR#: FX-2 input, FIFO write-strobe
• SLRD#: FX-2 input, FIFO read-strobe
• SLOE#: FX-2 input, output-enable, activates FX-2 data bus drivers
• PKTEND#: FX-2 input, packet end control signal, causes FX-2 to send data to host at

once, ignoring 512 byte alignment (so called “short packet”)
• Short packets sometimes lead to unpredictable behavior at host side. So EFM01 does

not support short packets! This signal has to be statically set to HIGH! Dummy data
should be added instead of creating short packets. There is normally no lack of
performance by doing this, because transmission of USB packets is bound to a time
framing scheme, regardless of amount of payload data.

• FIFOADR[1:0]: FX-2 input, endpoint buffer addresses, EFM01 uses only two endpoints
EP2 (OUT, ADR[1:0] = b”00”) and EP6 (IN, ADR[1:0] = b”10”)

• Switching FIFOADR[1] is enough to select data direction. FIFOADR[0] has to be
statically set to LOW!

• FLAG#-A/-B/-C: FX-2 outputs, A => EP2 “empty” flag, B => EP2 “almost empty” flag,
meaning one 16 bit data word is available, C => EP6 “almost full” flag, meaning one 16
bit data word can still be transmitted to EP6, there is no real “full” flag for EP6, “almost
full” could be used instead

• FD[15:0]: bidirectional tristate data bus

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -14- preliminary

http://www.cesys.com/
http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf
http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

Introduction to example FPGA designs

The CESYS EFM01 Card is shipped with some demonstration FPGA designs to give you
an easy starting point for own development projects. The whole source code is written in
VHDL. Verilog and schematic entry design flows are not supported.

• The design “efm01” demonstrates the implementation of a system-on-chip (SOC) with
host software access to the peripherals like GPIOs, Flash Memory and BlockRAM over
USB. This design requires a protocol layer over the simple USB bulk transfer (see
CESYS application note “Transfer Protocol for CESYS USB products” for details), which
is already provided by CESYS software API.

• The design “efm01_perf” allows high speed data transfers from and to the FPGA over
USB and can be used for software benchmarking purposes. This design uses 512 byte
aligned USB bulk transfer without additional protocol layer only.

The Spartan-3E XC3S500E Device is supported by the free XilinxTM ISE Webpack
development software. You will have to change some options of the project properties for
own applications.

A bitstream in the “*.bin”-format is needed, if you want to download your FPGA design with
the CESYS software API-functions LoadBIN() and ProgramFPGA(). The generation of
this file is disabled by default in the XilinxTM ISE development environment. Check “create
binary configuration file” at right click “generate programming file”=>properties=>general
options:

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -15- preliminary

Figure 5: ISE Generate Programming File Properties (Gen. Opt.)

http://www.cesys.com/

After ProgramFPGA() is called and the FPGA design is completely downloaded, the pin
#FPGA_RESET (note: the prefix # means, that the signal is active low) is automatically
pulsed (HIGH/LOW/HIGH). This signal can be used for resetting the FPGA design. The
API-function ResetFPGA() can be called to initiate a pulse on #FPGA_RESET at a user
given time.

The following sections will give you a brief introduction about the data transfer from and to
the FPGA over the Cypress FX-2 USB peripheral controller's slave FIFO interface, the
WISHBONE interconnection architecture and the provided peripheral controllers.

The EFM01 uses only slave FIFO mode for transferring data.

For further information about the FX-2 slave FIFO mode see Cypress FX-2 user manual
(EZ-USB_TRM.pdf) and datasheet (cy7c68013a_8.pdf) and about the WISHBONE
architecture see specification B.3 (wbspec_b3.pdf).

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -16- preliminary

http://www.cesys.com/

FPGA source code copyright information

This source code is copyrighted by CESYS GmbH / GERMANY, unless otherwise noted.

FPGA source code license

THIS SOURCECODE IS NOT FREE! IT IS FOR USE TOGETHER WITH THE CESYS
EFM01 USB CARD (ARTICLE-NR.: C1050-4107) ONLY! YOU ARE NOT ALLOWED TO
MODIFY AND DISTRIBUTE OR USE IT WITH ANY OTHER HARDWARE, SOFTWARE
OR ANY OTHER KIND OF ASIC OR PROGRAMMABLE LOGIC DESIGN WITHOUT THE
EXPLICIT PERMISSION OF THE COPYRIGHT HOLDER!

Disclaimer of warranty

THIS SOURCECODE IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT
THERE IS NO WARRANTY OR SUPPORT FOR THIS SOURCECODE. THE COPYRIGHT
HOLDER PROVIDES THIS SOURCECODE "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THIS
SOURCECODE IS WITH YOU. SHOULD THIS SOURCECODE PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IN NO EVENT WILL THE COPYRIGHT HOLDER BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THIS SOURCECODE (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THIS
SOURCECODE TO OPERATE WITH ANY OTHER SOFTWARE-PROGRAMS,
HARDWARE-CIRCUITS OR ANY OTHER KIND OF ASIC OR PROGRAMMABLE LOGIC
DESIGN), EVEN IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -17- preliminary

http://www.cesys.com/

Design “efm01”

An on-chip-bus system is implemented in this design. The VHDL source code shows you,
how to build a 32 Bit WISHBONE based shared bus architecture. All devices of the
WISHBONE system support only SINGLE READ / WRITE Cycles. Files and modules
having something to do with the WISHBONE system are labeled with the prefix “wb_”. The
WISHBONE master is labeled with the additional prefix “ma_” and the slaves are labeled
with “sl_”.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -18- preliminary

Figure 6: WISHBONE system overview

IN
TE

R
C

O
N

SYSCON

SLAVE:
FLASH Memory

SLAVE:
BlockRAM

SLAVE:
GPIO

SLAVE:
SPEEDTEST

MASTER:
FX-2

http://www.cesys.com/

Files and modules

src/wishbone.vhd:

A package containing datatypes, constants, components, signals and information for
software developers needed for the WISHBONE system. You will find C/C++-style
“#define”s with important addresses and values to copy and paste into your software
source code after VHDL comments (“--”).

src/efm01_top.vhd:

This is the top level entity of the design. The WISHBONE components are instantiated
here.

src/wb_syscon.vhd:

This entity provides the WISHBONE system signals RST and CLK. It uses #FPGA_RESET
and SYSCLK as external reset and clock source. SYSCLK is identically to FX2_IFCLK.
That means FX-2 slave FIFO interface and WISHBONE system are fully synchronous.

src/wb_intercon.vhd:

All WISHBONE devices are connected to this shared bus interconnection logic. Some
MSBs of the address are used to select the appropriate slave.

src/wb_ma_fx2.vhd:

This is the entity of the WISHBONE master, which converts the CESYS USB protocol into
one or more 32 Bit single read/write WISHBONE cycles. The low level FX-2 slave FIFO
controller (fx2_slfifo_ctrl.vhd) is used and 16/32 bit data width conversion is done by using
special FIFOs (sfifo_hd_a1Kx18b0K5x36.vhd).

src/wb_sl_bram.vhd:

A internal BlockRAM is instantiated here and simply connected to the WISHBONE
architecture. It can be used for testing address oriented data transactions over USB.

src/wb_sl_speedtest.vhd:

A single register with zero delay slave handshake response. It can be used for
benchmarking purposes. Auto address increment must be deactivated.

src/wb_sl_gpio.vhd:

This entity controls the signals at connectors J3 and J4. 50 I/Os can be used as general
purpose I/Os. Each of these I/Os can be configured as an in- or output. Additional pinout
information is provided by an embedded comma separated values file after VHDL

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -19- preliminary

http://www.cesys.com/

comments (“--”).

src/wb_sl_flash.vhd:

The module encapsulates the low level FLASH controller flash_ctrl.vhd. The integrated
command register supports the BULK ERASE command, which erases the whole memory
by programming all bits to '1'. In write cycles the bit values can only be changed from '1' to
'0'. That means, that it is not allowed to have a write access to the same address twice
without erasing the whole flash before. The read access is as simple as reading from any
other WISHBONE device. Please see the SPI-FLASH data sheet (m25p40.pdf) for details
on programming and erasing. It is used for programming FPGA configuration bitstream to
SPI-FLASH.

src/fx2_slfifo_ctrl.vhd:

This controller copies data from FX-2 endpoints to internal FPGA buffers (sync_fifo16.vhd)
and vice versa.

src/sync_fifo16.vhd:

This entity is a general purpose synchronous FIFO buffer with 15 data entries. It is build of
FPGA distributed RAM.

src/sfifo_hd_a1Kx18b0K5x36.vhd:

This entity is a general purpose synchronous FIFO buffer with mismatched port widths. It is
build of a FPGA BlockRAM.

src/flash_ctrl.vhd:

The low level FLASH controller for the 4MBit SPI FLASH memory. It supports reading and
writing of four bytes of data at one time as well as erasing the whole memory.

efm01.ise:

Project file for XilinxTM ISE

efm01.ucf:

User constraint file with timing and pinout constraints

WISHBONE transactions

The software API-functions ReadRegister(), WriteRegister() lead to one and
ReadBlock(), WriteBlock() to several consecutive WISHBONE single cycles.
Bursting is not allowed in the WISHBONE demo application. The address can be
incremented automatically in block transfers. You can find details on enabling/disabling the

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -20- preliminary

http://www.cesys.com/

burst mode and address auto-increment mode in the CESYS application note “Transfer
Protocol for CESYS USB products” and software API documentation.

CESYS USB transfer protocol is converted into one or more WISHBONE data transaction
cycles. So the FX-2 becomes a master device in the internal WISHBONE architecture.
Input signals for the WISHBONE master are labeled with the postfix “_I”, output signals
with “_O”.

WISHBONE signals driven by the master:
• STB_O: strobe, qualifier for the other output signals of the master, indicates valid data

and control signals
• WE_O: write enable, indicates, if a write or read cycle is in progress
• ADR_O[31:0]: 32-Bit address bus, the software uses BYTE addressing, but the

WISHBONE system uses DWORD (32-Bit) addressing. The address is shifted two bits
inside the WISHBONE master module

• DAT_O[31:0]: 32-Bit data out bus for data transportation from master to slaves

WISHBONE signals driven by slaves:
• DAT_I[31:0]: 32-Bit data in bus for data transportation from slaves to master
• ACK_I: handshake signal, slave devices indicate a successful data transfer for writing

and valid data on bus for reading by asserting this signal, slaves can insert wait states by
delaying this signal, it is possible to assert ACK_I in first clock cycle of STB_O assertion
using a combinatorial handshake to transfer data in one clock cycle (recommendation:
registered feedback handshake should be used in applications, where maximum data
throughput is not needed, because timing specs are easier to meet)

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -21- preliminary

Figure 7: WISHBONE transactions with WriteRegister() and WriteBlock()

CLK

STB_O

WE_O

ADR_O[31:0]

DAT_O[31:0]

DAT_I[31:0]

ACK_I

D

A>>2 A>>2

D


W

IS
H

B
O

N
E

M
AS

TE
R

http://www.cesys.com/

The WISHBONE signals in these illustrations and explanations are shown as simple bit
types or bit vector types, but in the VHDL code these signals could be encapsulated in
extended data types like arrays or records.

Example:
...

port map
(

...
ACK_I => intercon.masters.slave(2).ack,
...

Port ACK_I is connected to signal ack of element 2 of array slave, of record masters, of
record intercon.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -22- preliminary

Figure 8: WISHBONE transactions with ReadRegister() and ReadBlock()

CLK

STB_O

WE_O

ADR_O[31:0]

DAT_O[31:0]

DAT_I[31:0]

ACK_I

A>>2 A>>2

D



W
IS

H
B

O
N

E
M

AS
TE

R

http://www.cesys.com/

Design “efm01_perf”

This design is intended to demonstrate behavior of low level slave FIFO controller entity
fx2_slfifo_ctrl. It handles the FX-2 slave FIFO interface. It can be synthesized in
two modes, data loopback mode and infinite data source/sink mode with 16 bit counting
data source. Ports of fx2_slfifo_ctrl connected to FX-2 are labeled with prefix fx2_
and ports connected to user logic are labeled with prefix app_. Sometimes the
abbreviations _h2p_ (host to peripheral) and _p2h_ (peripheral to host) are used in signal
names to indicate data flow direction.

Files and modules

src/efm01_perf.vhd:

This is the top level module. It instantiates the low level slave FIFO controller
(fx2_slfifo_ctrl.vhd). A generic variable selects between data loopback and infinite data
mode at synthesis time.

src/fx2_slfifo_ctrl.vhd:

See chapter “Design efm01”

src/sync_fifo16.vhd:

See chapter “Design efm01”

efm01_perf.ise:

Project file for XilinxTM ISE.

efm01_perf.ucf:

User constraint file with timing and pinout constraints.

Slave FIFO transactions

The software API functions ReadBulk() and WriteBulk() lead to 512 byte aligned
USB bulk transfers without CESYS USB transfer protocol. So it is possibly to achieve
maximum data rates over USB. fx2_slfifo_ctrl checks FX-2 FIFO flags and copies
data from FX-2 endpoint buffers to FPGA and vice versa. So the USB data link looks like
any other FPGA FIFO buffer to user logic.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -23- preliminary

http://www.cesys.com/

The upper waveform demonstrates the behavior of app_fifo_wr_full_o and
app_fifo_wr_count_o when there is no transaction on the slave FIFO controller side of
the FIFO. During simultaneous FIFO-read- and FIFO-write-transactions, the signals do not
change. The signal app_fifo_wr_full_o will be cleared and app_fifo_wr_count_o
will decrease, if there are read-transactions at the slave FIFO controller side, but no write-
transactions at the application side.

The lower waveform demonstrates the behavior of app_fifo_rd_empty_o and
app_fifo_rd_count_o when there is no transaction at the slave FIFO controller side of
the FIFO. During simultaneous FIFO-read- and FIFO-write-transactions, the signals do not
change. The signal app_fifo_rd_empty_o will be cleared and
app_fifo_rd_count_o will increase, if there are write-transactions on the slave FIFO
controller side, but no read-transactions at the application side. Please note the one clock-
cycle delay between app_fifo_rd_i and app_fifo_rd_data_o!

The signals app_usb_h2p_pktcount_o[7:0] and app_usb_p2h_pktcount_o[7:0]
(not shown in figure 6) are useful to fit the 512 byte USB bulk packet alignment. They are
automatically incremented, if the appropriate read- (app_fifo_rd_i) or write-strobe
(app_fifo_wr_i) is asserted. These signals count 16 bit data words, not data bytes! 512
byte alignment is turned into a 256 16 bit word alignment at this interface.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -24- preliminary

Figure 9: FIFO transactions with ReadBulk() and WriteBulk() at user logic side

app_fifo_wr_count_o

app_fifo_rd_count_o

app_fifo_wr_i

app_fifo_rd_i

app_fifo_wr_full_o

app_fifo_rd_empty_o

app_fifo_rd_data_o

app_fifo_wr_data_i

ifclk

D0 D1 D2 D3 D4

1413121110 15

ifclk

D0D1D2D3D4

12345 0 FX
-2

 =
>

FP
G

A
FP

G
A

 =
>

FX
-2

http://www.cesys.com/

Software

Introduction

The UDK (Unified Development Kit) is used to allow developers to communicate with
Cesys's USB and PCI(e) devices. Older releases were just a release of USB and PCI
drivers plus API combined with some shared code components. The latest UDK combines
all components into one single C++ project and offers interfaces to C++, C and for .NET
(Windows only). The API has functions to mask-able enumeration, unique device
identification (runtime), FPGA programming and 32bit bus based data communication. PCI
devices have additional support for interrupts.

Changes to previous versions

Beginning with release 2.0, the UDK API is a truly combined interface to Cesys's USB and
PCI devices. The class interface from the former USBUni and PCIBase API's was saved at
a large extend, so porting applications from previous UDK releases can be done without
much work.

Here are some notes about additional changes:

• Complete rewrite
• Build system cleanup, all UDK parts (except .NET) are now part of one large project
• 64 bit operating system support
• UDK tools combined into one application (UDKLab)
• Updated to latest PLX SDK (6.31)
• Identical C, C++ and .NET API interface (.NET Windows only)⇒

• Different versions of components collapsed to one UDK version
• Windows only:
• Microsoft Windows Vista / Seven(7) support (PCI drivers are not released for Seven at

the moment)
• Driver installation / update is done by an installer now
• Switched to Microsoft's generic USB driver (WinUSB)
• Support moved to Visual Studio 2005, 2008 and 2010(experimental), older Visual

Studio versions are not supported anymore
• Linux only:
• Revisited USB driver, tested on latest Ubuntu distributions (32/64)
• Simpler USB driver installation

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -25- preliminary

http://www.cesys.com/

Windows

Requirements

To use the UDK in own projects, the following is required:

• Installed drivers
• Microsoft Visual Studio 2005 or 2008; 2010 is experimental
• CMake 2.6 or higher ⇒ http://www.cmake.org
• wxWidgets 2.8.10 or higher (must be build separately) ⇒ http://www.wxwidgets.org

[optionally, only if UDKLab should be build]

Driver installation

The driver installation is part of the UDK installation but can run standalone on final
customer machines without the need to install the UDK itself. During installation, a choice
of drivers to install can be made, so it is not necessary to install i.e. PCI drivers on
machines that should run USB devices only or vice versa. If USB drivers get installed on a
machine that has a pre-2.0 UDK driver installation, we prefer the option for USB driver
cleanup offered by the installer, this cleanly removes all dependencies of the old driver
installation.

Note: There are separate installers for 32 and 64 bit systems.

Important: At least one device should be present when installing the drivers !

Build UDK

Prerequisites

The most components of the UDK are part of one large CMake project. There are some
options that need to be fixed in msvc.cmake inside the UDK installation root:

• BUILD_UI_TOOLS If 0, UDKLab will not be part of the subsequent build procedure, if 1 it
will. This requires an installation of an already built wxWidgets.

• WX_WIDGETS_BASE_PATH Path to wxWidgets build root, only needed if
BUILD_UI_TOOLS is not 0.

• USE_STATIC_RTL If 0, all projects are build against the dynamic runtime libraries. This
requires the installation of the appropriate Visual Studio redistributable pack on every
machine the UDK is used on. Using a static build does not create such dependencies,
but will conflict with the standard wxWidgets build configuration.

Solution creation and build

The preferred way is to open a command prompt inside the installation root of the UDK,

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -26- preliminary

http://www.cesys.com/
http://www.wxwidgets.org/
http://www.cmake.org/

lets assume to use c:\\udkapi.

c:
cd \udkapi

CMake allows the build directory separated to the source directory, so it's a good idea to do
it inside an empty sub-directory:

mkdir build
cd build

The following code requires an installation of CMake and at least one supported Visual
Studio version. If CMake isn't included into the PATH environment variable, the path must
be specified as well:

cmake ..

This searches the preferred Visual Studio installation and creates projects for it. Visual
Studio Express users may need to use the command prompt offered by their installation. If
multiple Visual Studio versions are installed, CMake's command parameter '-G' can be
used to specify a special one, see CMake's documentation in this case. This process
creates the solution files inside c:\\udkapi\\build. All subsequent tasks can be done in Visual
Studio (with the created solution), another invocation of cmake isn't necessary under
normal circumstances.

Important: The UDK C++ API must be build with the same toolchain and build flags like
the application that uses it. Otherwise unwanted side effects in exception handling will
occur ! (See example in Add project to UDK build).

Info: It is easy to create different builds with different Visual Studio versions by creating
different build directories and invoke CMake with different '-G' options inside them:

c:
cd \udkapi
mkdir build2005
cd build2005
cmake -G"Visual Studio 8 2005" ..
cd ..
mkdir build2008
cd build2008
cmake -G"Visual Studio 9 2008" ..

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -27- preliminary

http://www.cesys.com/

Linux

There are too many distributions and releases to offer a unique way to the UDK installation.
We've chosen to work with the most recent Ubuntu release, 9.10 at the moment. All
commands are tested on an up to date installation and may need some tweaking on other
systems / versions.

Requirements
• GNU C++ compiler toolchain
• zlib development libraries
• CMake 2.6 or higher ⇒ http://www.cmake.org
• wxWidgets 2.8.10 or higher ⇒ http://www.wxwidgets.org [optionally, only if UDKLab

should be build]
sudo apt-get install build-essential cmake zlib1g-dev libwxbase2.8-dev
libwxgtk2.8-dev

The Linux UDK comes as gzip'ed tar archive, as the Windows installer won't usually work.
The best way is to extract it to the home directory:

tar xzvf UDKAPI-x.x.tgz ~/

This creates a directory /home/[user]/udkapi[version] which is subsequently called udkroot.
The following examples assume an installation root in ~/udkapi2.0.

Important: Commands sometimes contain a ` symbol, have attention to use the right one,
refer to command substitution if not familiar with.

Drivers

The driver installation on Linux systems is a bit more complicated than on Windows
systems. The drivers must be build against the installed kernel version. Updating the kernel
requires a rebuild.

USB

As the USB driver is written by Cesys, the installation procedure is designed to be as
simple and automated as possible. The sources and support files reside in directory
<udkroot>/drivers/linux/usb. Just go there and invoke make.

cd ~/udkapi2.0/drivers/linux/usb
make

If all external dependencies are met, the build procedure should finish without errors.
Newer kernel releases may change things which prevent success, but it is out of the scope
of our possibilities to be always up-to-date with latest kernels. To install the driver, the

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -28- preliminary

http://www.cesys.com/
http://www.wxwidgets.org/
http://www.cmake.org/

following command has to be done:

sudo make install

This will do the following things:

• Install the kernel module inside the module library path, update module dependencies
• Install a new udev rule to give device nodes the correct access rights (0666)

(/etc/udev/rules.d/99-ceusbuni.rules)
• Install module configuration file (/etc/dev/modprobe.d/ceusbuni.conf)
• Start module

If things work as intended, there must be an entry /proc/ceusbuni after this procedure.

The following code will completely revert the above installation (called in same directory):

sudo make remove

The configuration file, /etc/modprobe.d/ceusbuni.conf, offers two simple options (Read the
comments in the file):

• Enable kernel module debugging
• Choose between firmware which automatically powers board peripherals or not

Changing these options require a module reload to take affect.

PCI

The PCI drivers are not created or maintained by Cesys, they are offered by the
manufacturer of the PCI bridges that were used on Cesys PCI(e) boards. So problems
regarding them can't be handled or supported by us.

Important: If building PlxSdk components generate the following error / warning:

/bin/sh [[: not found

Here's a workaround: The problem is Ubuntu's default usage of dash as sh, which can't
handle command [[. Replacing dash with bash is accomplished by the following commands
that must be done as root:

sudo rm /bin/sh
sudo ln -s /bin/bash /bin/sh

Installation explained in detail:

PlxSdk decompression:

cd ~/udkapi2.0/drivers/linux
tar xvf PlxSdk.tar

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -29- preliminary

http://www.cesys.com/

Build drivers:

cd PlxSdk/Linux/Driver
PLX_SDK_DIR=`pwd`/../../ ./buildalldrivers

Loading the driver manually requires a successful build, it is done using the following
commands:

cd ~/udkapi2.0/drivers/linux/PlxSdk
sudo PLX_SDK_DIR=`pwd` Bin/Plx_load Svc

PCI based boards like the PCIS3Base require the following driver:

sudo PLX_SDK_DIR=`pwd` Bin/Plx_load 9056

PCIe based boards like the PCIeV4Base require the following:

sudo PLX_SDK_DIR=`pwd` Bin/Plx_load 8311

Automation of this load process is out of the scope of this document.

Build UDK

Prerequisites

The whole UDK will be build using CMake, a free cross platform build tool. It creates
dynamic Makefiles on unix compatible platforms.

The first thing should be editing the little configuration file linux.cmake inside the installation
root of the UDK. It contains the following options:

• BUILD_UI_TOOLS If 0 UDKLab isn't build, if 1 UDKLab is part of the build, but requires
a compatible wxWidgets installation.

• CMAKE_BUILD_TYPE Select build type, can be one of Debug, Release,
RelWithDebInfo, MinSizeRel. If there should be at least 2 builds in parallel, remove this
line and specify the type using command line option -DCMAKE_BUILD_TYPE=….

Makefile creation and build

Best usage is to create an empty build directory and run cmake inside of it:

cd ~/udkapi2.0
mkdir build
cd build
cmake ..

If all external dependencies are met, this will finish creating a Makefile. To build the UDK,
just invoke make:

make

Important: The UDK C++ API must be build with the same toolchain and build flags like

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -30- preliminary

http://www.cesys.com/

the application that uses it. Otherwise unwanted side effects in exception handling will
occur ! (See example in Add project to UDK build).

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -31- preliminary

http://www.cesys.com/

Use APIs in own projects

C++ API
• Include file: udkapi.h
• Library file:
• Windows: udkapi_vc[ver]_[arch].lib, [ver] is 8, 9, 10, [arch] is x86 or amd64, resides in

lib/[build]/
• Linux: libusbapi.so, resides in lib/

• Namespace: ceUDK

As this API uses exceptions for error handling, it is really important to use the same
compiler and build settings which are used to build the API itself. Otherwise exception
based stack unwinding may cause undefined side effects which are really hard to fix.

Add project to UDK build

A simple example would be the following. Let's assume there's a source file
mytest/mytest.cpp inside UDK's root installation. To build a mytestexe executable with UDK
components, those lines must be appended:

add_executable(mytestexe mytest/mytest.cpp)
target_link_libraries(mytestexe ${UDKAPI_LIBNAME})

Rebuilding the UDK with these entries in Visual Studio will create a new project inside the
solution (and request a solution reload). On Linux, calling make will just include mytestexe
into the build process.

C API
• Include file: udkapic.h
• Library file:
• Windows: udkapic_vc[ver]_[arch].lib, [ver] is 8, 9, 10, [arch] is x86 or amd64, resides in

lib/[build]/
• Linux: libusbapic.so, resides in lib/

• Namespace: Not applicable

The C API offers all functions from a dynamic link library (Windows: .dll, Linux: .so) and
uses standardized data types only, so it is usable in a wide range of environments.

Adding it to the UDK build process is nearly identical to the C++ API description, except
that ${UDKAPIC_LIBNAME} must be used.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -32- preliminary

http://www.cesys.com/

.NET API
• Include file: -
• Library file: udkapinet.dll, resided in bin/[build]
• Namespace: cesys.ceUDK

The .NET API, as well as it example application is separated from the normal UDK build.
First of all, CMake doesn't have native support .NET, as well as it is working on Windows
systems only. Building it has no dependency to the standard UDKAPI, all required sources
are part of the .NET API project. The Visual Studio solution is located in directory dotnet/
inside the UDK installation root. It is a Visual Studio 8/2005 solution and should be
convertible to newer releases. The solution is split into two parts, the .NET API in mixed
native/managed C++ and an example written in C#.

To use the .NET API in own projects, it's just needed to add the generated DLL
udkapinet.dll to the projects references.

API Functions in detail

Notice: To prevent overhead in most usual scenarios, the API does not serialize calls in
any way, so the API user is responsible to serialize call if used in a multi-threaded context !

Notice: The examples for .NET in the following chapter are in C# coding style.

API Error handling

Error handling is offered very different. While both C++ and .NET API use exception
handling, the C API uses a classical return code / error inquiry scheme.

C++ and .NET API

UDK API code should be embedded inside a try branch and exceptions of type
ceException must be caught. If an exception is raised, the generated exception object
offers methods to get detailed information about the error.

C API

All UDK C API functions return either CE_SUCCESS or CE_FAILED. If the latter is
returned, the functions below should be invoked to get the details of the error.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -33- preliminary

http://www.cesys.com/

Methods/Functions
GetLastErrorCode

API Code
C++ unsigned int ceException::GetErrorCode()

C unsigned int GetLastErrorCode()
.NET uint ceException.GetLastErrorCode()

Returns an error code which is intended to group the error into different kinds. It can be
one of the following constants:

Error code Kind of error
ceE_TIMEOUT Errors with any kind of timeout.
ceE_IO_ERROR IO errors of any kind, file, hardware, etc.
ceE_UNEXP_HW_BEH Unexpected behavior of underlying hardware (no response, wrong data).
ceE_PARAM Errors related to wrong call parameters (NULL pointers, …).
ceE_RESOURCE Resource problem, wrong file format, missing dependency.
ceE_API Undefined behavior of underlying API.
ceE_ORDER Wrong order calling a group of code (i.e. deinit()→init()).
ceE_PROCESSING Occurred during internal processing of anything.
ceE_INCOMPATIBLE Not supported by this device.
ceE_OUTOFMEMORY Failure allocating enough memory.

GetLastErrorText

API Code
C++ const char *ceException::GetLastErrorText()

C const char *GetLastErrorText()
.NET string ceException.GetLastErrorText()

Returns a text which describes the error readable by the user. Most of the errors contain
problems meant for the developer using the UDK and are rarely usable by end users. In
most cases unexpected behavior of the underlying operation system or in data transfer is
reported. (All texts are in english.)

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -34- preliminary

http://www.cesys.com/

Device enumeration

The complete device handling is done by the API internally. It manages the resources of all
enumerated devices and offers either a device pointer or handle to API users. Calling Init()
prepares the API itself, while DeInit() does a complete cleanup and invalidates all device
pointers and handles.

To find supported devices and work with them, Enumerate() must be called after Init().
Enumerate() can be called multiple times for either finding devices of different types or to
find newly plugged devices (primary USB at the moment). One important thing is the
following: Enumerate() does never remove a device from the internal device list and so
invalidate any pointer, it just add new ones or does nothing, even if a USB device is
removed. For a clean detection of a device removal, calling DeInit(), Init() and Enumerate()
(in exactly that order) will build a new, clean device list, but invalidates all previous created
device pointers and handles.

To identify devices in a unique way, each device gets a UID, which is a combination of
device type name and connection point, so even after a complete cleanup and new
enumeration, devices can be exactly identified by this value.

Methods/Functions
Init

API Code
C++ static void ceDevice::Init()

C CE_RESULT Init()
.NET static void ceDevice.Init()

Prepare internal structures, must be the first call to the UDK API. Can be called after
invoking DeInit() again, see top of this section.

DeInit

API Code
C++ static void ceDevice::DeInit()

C CE_RESULT DeInit()
.NET static void ceDevice.DeInit()

Free up all internal allocated data, there must no subsequent call to the UDK API after this
call, except Init() is called again. All retrieved device pointers and handles are invalid after
this point.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -35- preliminary

http://www.cesys.com/

Enumerate

API Code
C++ static void ceDevice::Enumerate(ceDevice::ceDeviceType DeviceType)

C CE_RESULT Enumerate(unsigned int DeviceType)
.NET static void ceDevice.Enumerate(ceDevice.ceDeviceType DeviceType)

Search for (newly plugged) devices of the given type and add them to the internal list.
Access to this list is given by GetDeviceCount() / GetDevice(). DeviceType can be one of
the following:

DeviceType Description
ceDT_ALL All UDK supported devices.
ceDT_PCI_ALL All UDK supported devices on PCI bus.
ceDT_PCI_PCIS3BASE Cesys PCIS3Base
ceDT_PCI_DOB DOB (*)
ceDT_PCI_PCIEV4BASE Cesys PCIeV4Base
ceDT_PCI_RTC RTC (*)
ceDT_PCI_PSS PSS (*)
ceDT_PCI_DEFLECTOR Deflector (*)
ceDT_USB_ALL All UDK supported devices.
ceDT_USB_USBV4F Cesys USBV4F
ceDT_USB_EFM01 Cesys EFM01
ceDT_USB_MISS2 MISS2 (*)
ceDT_USB_CID CID (*)
ceDT_USB_USBS6 Cesys USBS6

* Customer specific devices.

GetDeviceCount

API Code
C++ static unsigned int ceDevice::GetDeviceCount()

C CE_RESULT GetDeviceCount(unsigned int *puiCount)
.NET static uint ceDevice.GetDeviceCount()

Return count of devices enumerated up to this point. May be larger if rechecked after
calling Enumerate() in between.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -36- preliminary

http://www.cesys.com/

GetDevice

API Code
C++ static ceDevice *ceDevice::GetDevice(unsigned int uiIdx)

C CE_RESULT GetDevice(unsigned int uiIdx, CE_DEVICE_HANDLE *pHandle)
.NET static ceDevice ceDevice.GetDevice(uint uiIdx)

Get device pointer or handle to the device with the given index, which must be smaller than
the device count returned by GetDeviceCount(). This pointer or handle is valid up to the
point DeInit() is called.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -37- preliminary

http://www.cesys.com/

Information gathering

The functions in this chapter return valuable information. All except GetUDKVersionString()
are bound to devices and can be used after getting a device pointer or handle from
GetDevice() only.

Methods/Functions
GetUDKVersionString

API Code
C++ static const char *ceDevice::GetUDKVersionString()

C const char *GetUDKVersionString()
.NET static string ceDevice.GetUDKVersionString()

Return string which contains the UDK version in printable format.

GetDeviceUID

API Code
C++ const char *ceDevice::GetDeviceUID()

C CE_RESULT GetDeviceUID(CE_DEVICE_HANDLE Handle, char *pszDest, unsigned
int uiDestSize)

.NET string ceDevice.GetDeviceUID()

Return string formatted unique device identifier. This identifier is in the form of
type@location while type is the type of the device (i.e. EFM01) and location is the position
the device is plugged to. For PCI devices, this is a combination of bus, slot and function
(PCI bus related values) and for USB devices a path from device to root hub, containing
the port of all used hubs. So after re-enumeration or reboot, devices on the same machine
can be identified exactly.

Notice C API: pszDest is the buffer were the value is stored to, it must be at least of size
uiDestSize.

GetDeviceName

API Code
C++ const char *ceDevice::GetDeviceName()

C CE_RESULT GetDeviceName(CE_DEVICE_HANDLE Handle, char *pszDest, unsigned
int uiDestSize)

.NET string ceDevice.GetDeviceName()

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -38- preliminary

http://www.cesys.com/

Return device type name of given device pointer or handle.

Notice C API: pszDest is the buffer were the value is stored to, it must be at least of size
uiDestSize.

GetBusType

API Code
C++ ceDevice::ceBusType ceDevice::GetBusType()

C CE_RESULT GetBusType(CE_DEVICE_HANDLE Handle, unsigned int *puiBusType)
.NET ceDevice.ceBusType ceDevice.GetBusType()

Return type of bus a device is bound to, can be any of the following:

Constant Bus
ceBT_PCI PCI bus
ceBT_USB USB bus

GetMaxTransferSize

API Code
C++ unsigned int ceDevice::GetMaxTransferSize()

C CE_RESULT GetMaxTransferSize(CE_DEVICE_HANDLE Handle, unsigned int
*puiMaxTransferSize)

.NET uint ceDevice.GetMaxTransferSize()

Return count of bytes that represents the maximum in one transaction, larger transfers
must be split by the API user.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -39- preliminary

http://www.cesys.com/

Using devices

After getting a device pointer or handle, devices can be used. Before transferring data to or
from devices, or catching interrupts (PCI), devices must be accessed, which is done by
calling Open(). All calls in this section require an open device, which must be freed by
calling Close() after usage.

Either way, after calling Open(), the device is ready for communication. As of the fact, that
Cesys devices usually have an FPGA on the device side of the bus, the FPGA must be
made ready for usage. If this isn't done by loading contents from the on-board flash (not all
devices have one), a design must be loaded by calling one of the ProgramFPGA*() calls.
These call internally reset the FPGA after design download. From now on, data can be
transferred.

Important: All data transfer is based on a 32 bit bus system which must be implemented
inside the FPGA design. PCI devices support this natively, while USB devices use a
protocol which is implemented by Cesys and sits on top of a stable bulk transfer
implementation.

Methods/Functions
Open

API Code
C++ void ceDevice::Open()

C CE_RESULT Open(CE_DEVICE_HANDLE Handle)
.NET void ceDevice.Open()

Gain access to the specific device. Calling one of the other functions in this section require
a successful call to Open().

Notice: If two or more applications try to open one device, PCI and USB devices behave a
bit different. For USB devices, Open() causes an error if the device is already in use. PCI
allows opening one device from multiple processes. As PCI drivers are not developed by
Cesys, it's not possible to us to prevent this (as we see this as strange behavior). The best
way to share communication of more than one application with devices would be a client /
server approach.

Close

API Code
C++ void ceDevice::Close()

C CE_RESULT Close(CE_DEVICE_HANDLE Handle)
.NET void ceDevice.Close()

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -40- preliminary

http://www.cesys.com/

Finish working with the given device.

ReadRegister

API Code
C++ unsigned int ceDevice::ReadRegister(unsiged int uiRegister)

C CE_RESULT ReadRegister(CE_DEVICE_HANDLE Handle, unsigned int uiRegister,
unsigned int *puiValue)

.NET uint ceDevice.ReadRegister(uint uiRegister)

Read 32 bit value from FPGA design address space (internally just calling ReadBlock()
with size = 4).

WriteRegister

API Code
C++ void ceDevice::WriteRegister(unsiged int uiRegister, unsigned int uiValue)

C CE_RESULT WriteRegister(CE_DEVICE_HANDLE Handle, unsigned int uiRegister,
unsigned int uiValue)

.NET void ceDevice.WriteRegister(uint uiRegister, uint uiValue)

Write 32 bit value to FPGA design address space (internally just calling WriteBlock() with
size = 4).

ReadBlock

API Code
C++ void ceDevice::ReadBlock(unsiged int uiAddress, unsigned char *pucData, unsigned int

uiSize, bool bIncAddress)
C CE_RESULT ReadBlock(CE_DEVICE_HANDLE Handle, unsigned int uiAddress,

unsigned char *pucData, unsigned int uiSize, unsigned int uiIncAddress)
.NET void ceDevice.ReadBlock(uint uiAddess, byte[] Data, uint uiLen, bool bIncAddress)

Read a block of data to the host buffer which must be large enough to hold it. The size
should never exceed the value retrieved by GetMaxTransferSize() for the specific device.
bIncAddress is at the moment available for USB devices only. It flags to read all data from
the same address instead of starting at it.

WriteBlock

API Code
C++ void ceDevice::WriteBlock(unsiged int uiAddress, unsigned char *pucData, unsigned int

uiSize, bool bIncAddress)
C CE_RESULT WriteBlock(CE_DEVICE_HANDLE Handle, unsigned int uiAddress,

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -41- preliminary

http://www.cesys.com/

unsigned char *pucData, unsigned int uiSize, unsigned int uiIncAddress)
.NET void ceDevice.WriteBlock(uint uiAddess, byte[] Data, uint uiLen, bool bIncAddress)

Transfer a given block of data to the 32 bit bus system address uiAddress. The size should
never exceed the value retrieved by GetMaxTransferSize() for the specific device.
bIncAddress is at the moment available for USB devices only. It flags to write all data to the
same address instead of starting at it.

WaitForInterrupt

API Code
C++ bool ceDevice::WaitForInterrupt(unsigned int uiTimeOutMS)

C CE_RESULT WaitForInterrupt(CE_DEVICE_HANDLE Handle, unsigned int
uiTimeOutMS, unsigned int *puiRaised)

.NET bool ceDevice.WaitForInterrupt(uint uiTimeOutMS)

(PCI only) Check if the interrupt is raised by the FPGA design. If this is done in the time
specified by the timeout, the function returns immediately flagging the interrupt is raised
(return code / *puiRaised). Otherwise, the function returns after the timeout without
signaling.

Important: If an interrupt is caught, EnableInterrupt() must be called again before checking
for the next. Besides that, the FPGA must be informed to lower the interrupt line in any
way.

EnableInterrupt

API Code
C++ void ceDevice::EnableInterrupt()

C CE_RESULT EnableInterrupt(CE_DEVICE_HANDLE Handle)
.NET void ceDevice.EnableInterrupt()

(PCI only) Must be called in front of calling WaitForInterrupt() and every time an interrupt is
caught and should be checked again.

ResetFPGA

API Code
C++ void ceDevice::ResetFPGA()

C CE_RESULT ResetFPGA(CE_DEVICE_HANDLE Handle)
.NET void ceDevice.ResetFPGA()

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -42- preliminary

http://www.cesys.com/

Pulses the FPGA reset line for a short time. This should be used to sync the FPGA design
with the host side peripherals.

ProgramFPGAFromBIN

API Code
C++ void ceDevice::ProgramFPGAFromBIN(const char *pszFileName)

C CE_RESULT ProgramFPGAFromBIN(CE_DEVICE_HANDLE Handle, const char
*pszFileName)

.NET void ceDevice.ProgramFPGAFromBIN(string sFileName)

Program the FPGA with the Xilinx tools .bin file indicated by the filename parameter. Calls
ResetFPGA() subsequently.

ProgramFPGAFromMemory

API Code
C++ void ceDevice::ProgramFPGAFromMemory(const unsigned char *pszData, unsigned int

uiSize)
C CE_RESULT ProgramFPGAFromMemory(CE_DEVICE_HANDLE Handle, const

unsigned char *pszData, unsigned int uiSize)
.NET void ceDevice.ProgramFPGAFromMemory(byte[] Data, uint Size)

Program FPGA with a given array created with UDKLab. This was previously done using
fpgaconv.

ProgramFPGAFromMemoryZ

API Code
C++ void ceDevice::ProgramFPGAFromMemoryZ(const unsigned char *pszData, unsigned

int uiSize)
C CE_RESULT ProgramFPGAFromMemoryZ(CE_DEVICE_HANDLE Handle, const

unsigned char *pszData, unsigned int uiSize)
.NET void ceDevice.ProgramFPGAFromMemoryZ(byte[] Data, uint Size)

Same as ProgramFPGAFromMemory(), except the design data is compressed.

SetTimeOut

API Code
C++ void ceDevice::SetTimeOut(unsigned int uiTimeOutMS)

C CE_RESULT SetTimeOut(CE_DEVICE_HANDLE Handle, unsigned int uiTimeOutMS)
.NET void ceDevice.SetTimeOut(uint uiTimeOutMS)

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -43- preliminary

http://www.cesys.com/

Set the timeout in milliseconds for data transfers. If a transfer is not completed inside this
timeframe, the API generates a timeout error.

EnableBurst

API Code
C++ void ceDevice::EnableBurst(bool bEnable)

C CE_RESULT EnableBurst(CE_DEVICE_HANDLE Handle, unsigned int uiEnable)
.NET void ceDevice.EnableBurst(bool bEnable)

(PCI only) Enable bursting in transfer, which frees the shared address / data bus between
PCI(e) chip and FPGA by putting addresses on the bus frequently only.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -44- preliminary

http://www.cesys.com/

UDKLab

Introduction

UDKLab is a replacement of the former cesys-Monitor, as well as cesys-Lab and fpgaconv.
It is primary targeted to support FPGA designers by offering the possibility to read and write
values from and to an active design. It can further be used to write designs onto the
device's flash, so FPGA designs can load without host intervention. Additionally, designs
can be converted to C/C++ and C# arrays, which allows design embedding into an
application.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -45- preliminary

http://www.cesys.com/

The main screen

The following screen shows an active session with an EFM01 device. The base view is
intended to work with a device, while additional functionality can be found in the tools
menu.

The left part of the screen contains the device initialization details, needed to prepare the
FPGA with a design (or just a reset if loaded from flash), plus optional register writes for
preparation of peripheral components.

The right side contains elements for communication with the FPGA design:

• Register read and write, either by value or bit-wise using checkboxes.
• Live update of register values.
• Data areas (like RAM or Flash) can be filled from file or read out to file.
• Live view of data areas.
• More on these areas below.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -46- preliminary

Figure 10: UDKLab Main Screen

http://www.cesys.com/

Using UDKLab

After starting UDKLab, most of the UI components are disabled. They will be enabled at
the point they make sense. As no device is selected, only device independent functions are
available:

• The FPGA design array creator
• The option to define USB Power-On behavior
• Info menu contents

All other actions require a device, which can be chosen via the device selector which pops
up as separate window:

Figure 11: Device selection flow

If the device list is not up to date, clicking Re-Enum will search again. A device can be
selected by either double clicking on it or choosing OK.

Important: Opening the device selector again will internally re-initialize the underlying API,
so active communication is stopped and the right panel is disabled again (more on the
state of this panel below).

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -47- preliminary

http://www.cesys.com/

After a device has been selected, most UI components are available:

• FPGA configuration
• FPGA design flashing [if device has support]
• Project controls
• Initializer controls (Related to projects)

The last disabled component at this point is the content panel. It is enabled if the
initialization sequence has been run. The complete flow to enable all UI elements can be
seen below:

Figure 12: Prepare to work with device

FPGA configuration

Choosing this will pop up a file selection dialog, allowing to choose the design for
download. If the file choosing isn't canceled, the design will be downloaded subsequent to
closing the dialog.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -48- preliminary

http://www.cesys.com/

FPGA design flashing

This option stores a design into the flash component on devices that have support for it.
The design is loaded to the FPGA after device power on without host intervention. How
and under which circumstances this is done can be found in the hardware description of
the corresponding device. The following screen shows the required actions for flashing:

Figure 13: Flash design to device

Projects

Device communication is placed into a small project management. This reduces the
actions from session to session and can be used for simple service tasks too. A projects
stores the following information:

• Device type it is intended to
• Initializing sequence
• Register list
• Data area list

Projects are handled like files in usual applications, they can be loaded, saved, new

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -49- preliminary

http://www.cesys.com/

projects can be created. Only one project can be active in one session.

Initializing sequence

The initializing sequence is a list of actions that must be executed in order to work with the
FPGA on the device. (The image shows an example initializing list of an EFM01, loading
our example design and let the LED blink for some seconds):

Figure 14: Initializing sequence

Sequence contents

UDKLab supports the following content for initialization:

• FPGA programming
• FPGA reset
• Register write
• Sleep

Without a design, an FPGA does nothing, so it must be loaded before usage. This can be
ensured in two ways:

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -50- preliminary

http://www.cesys.com/

• Download design from host
• Load design from flash (supported on EFM01, USBV4F and USBS6)

So the first entry in the initialize list must be a program entry or, if loaded from flash, a reset
entry (To sync communication to the host side). Subsequent to this, a mix of register write
and sleep commands can be placed, which totally depends on the underlying FPGA
design. This can be a sequence of commands sent to a peripheral component or to fill data
structures with predefined values. If things get complexer, i.e. return values must be
checked, this goes beyond the scope of the current UDKLab implementation and must be
solved by a host process.

To control the sequence, the buttons on the left side can be used. In the order of
appearance, they do the following (also indicated by tooltips):

• Clear complete list
• Add new entry (to the end of the list)
• Move currently selected entry on position up
• Move currently selected entry on position down
• Remove currently selected entry

All buttons should be self explanatory, but here's a more detailed look on the add entry, it
opens the following dialog:

One of the four possible entries must be selected using the radio button in front of it.
Depending on the option, one or two parameters must be set, OK adds the new action to
initializer list.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -51- preliminary

Figure 15: Add new initializing task

http://www.cesys.com/

Sequence start

The button sitting below the list runs all actions from top to bottom. In addition to this, the
remaining UI components, the content panel, will be enabled, as UDKLab expects a
working communication at this point. The sequence can be modified an started as often as
wished.

Content panel

The content panel can be a visual representation of the FPGA design loaded during
initialization. It consists of a list of registers and data areas, which can be visit and modified
using UDKLab. The view is split into two columns, while the left part contains the registers
and the right part all data area / block entries.

Figure 16: Content panel

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -52- preliminary

http://www.cesys.com/

Register entry

A register entry can be used to communicate with a 32 bit register inside the FPGA. In
UDKLab, a register consists of the following values:

• Address
• Name
• Info text

The visual representation of one register can be seen in the following image:

Figure 17: Register panel

The left buttons are responsible for adding new entries, move the entry up or down and
removing the current entry, all are self explanatory. The header shows it's mapping name
as well as the 32 bit address. The question mark in the lower right will show a tooltip if the
mouse is above it, which is just a little help for users. Both input fields can be used to write
in a new value, either hex- or decimal or contain the values if they are read from FPGA
design. The checkboxes represent one bit of the current value. Clicking the Read button
will read the current value from FPGA and update both text boxes as well as the
checkboxes, which is automatically done every 100ms if the Auto button is active. Setting
register values inside the FPGA is done in a similar way, clicking the Write button writes the
current values to the device. One thing needs a bit attention here:

Clicking on the checkboxes implicitly writes the value without the need to click on the Write
button !

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -53- preliminary

http://www.cesys.com/

Data area entry

A data area entry can be used to communicate with a data block inside the FPGA,
examples are RAM or flash areas. Data can be transfered from and to files, as well as
displayed in a live view. An entry constits of the following data:

• Address
• Name
• Data alignment
• Size
• Read-only flag

The visual representation is shown below.

Figure 18: Data area panel

Similar to the register visualization, the buttons on the right side can be used to add, move
and remove data area panels. The header shows the name and the address followed by
the data area details. Below are these buttons:

• Device To File: The complete area is read and stored to the file which is defined in the
file dialog opening after clicking the button.

• File To Device: This reads the file selected in the upcoming file dialog and stores the
contents in the data area, limited by the file size or data area size. This button is not
shown if the Read-only flag is set.

• Live View: If this button is active, the text view below shows the contents of the area,
updated every 100 ms, the view can be scrolled, so every piece can be visited.

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -54- preliminary

http://www.cesys.com/

Additional information

References
• CESYS EFM01 software API and sample code
• Cypress FX-2 LP USB peripheral controller datasheet (cy7c68013a_8.pdf) and user

manual (EZ-USB_TRM.pdf)
• Specification for the “WISHBONE System-on-Chip (SoC) Interconnection Architecture for

Portable IP Cores” Revision B.3, released September 7, 2002 (wbspec_b3.pdf)
• CESYS application note “Transfer Protocol for CESYS USB products”

Links
• http://www.vhdl-online.de/
• Informations about the VHDL language, including a tutorial, a language reference, design

hints for describing state machines, synthesis and the synthesizable language subset
• http://www.opencores.org/projects.cgi/web/wishbone/
• Home of the WISHBONE standard
• http://www.cypress.com/
• Provider of the FX-2 LP USB peripheral controller
• http://www.xilinx.com/
• Provider of the Spartan-3ETM FPGA and the free FPGA development environment ISE

WebPACK

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -55- preliminary

http://www.cesys.com/
http://www.xilinx.com/
http://www.cypress.com/
http://www.opencores.org/projects.cgi/web/wishbone/
http://www.vhdl-online.de/

Table of contents

Table of Contents
Copyright information .. 2

Overview .. 3
Summary of EFM01 ... 3
Feature list .. 3
Included in delivery .. 3

Hardware .. 4
SPARTAN-3E FPGA .. 4
Module size .. 4
Connectors and FPGA pinout ... 5

Powering EFM01 .. 6
EFM01 configuration ... 7
How to store configuration data in SPI Flash ... 8

Loading SPI Flash via USB ... 8
SPI Flash Indirect Programming Using FPGA JTAG Chain ... 8
SPI Flash Direct Programming using iMPACT ... 9
Program SPI Flash using external microcontrollers .. 10

External expansion connectors ... 10

FPGA design .. 14
Cypress FX-2 LP and USB basics .. 14
Clocking FPGA designs ... 14
FX-2/FPGA slave FIFO connection ... 15
Introduction to example FPGA designs .. 16
FPGA source code copyright information .. 18
FPGA source code license .. 18
Disclaimer of warranty ... 18
Design “efm01” .. 19

Files and modules ... 20
src/wishbone.vhd: .. 20
src/efm01_top.vhd: .. 20
src/wb_syscon.vhd: .. 20
src/wb_intercon.vhd: .. 20
src/wb_ma_fx2.vhd: ... 20
src/wb_sl_bram.vhd: .. 20

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -56- preliminary

http://www.cesys.com/

src/wb_sl_speedtest.vhd: ... 20
src/wb_sl_gpio.vhd: ... 20
src/wb_sl_flash.vhd: .. 21
src/fx2_slfifo_ctrl.vhd: ... 21
src/sync_fifo16.vhd: ... 21
src/sfifo_hd_a1Kx18b0K5x36.vhd: ... 21
src/flash_ctrl.vhd: ... 21
efm01.ise: ... 21
efm01.ucf: .. 21

WISHBONE transactions ... 21
WISHBONE signals driven by the master: ... 22
WISHBONE signals driven by slaves: .. 22
Example: ... 23

Design “efm01_perf” ... 24
Files and modules ... 24

src/efm01_perf.vhd: ... 24
src/fx2_slfifo_ctrl.vhd: ... 24
src/sync_fifo16.vhd: ... 24
efm01_perf.ise: .. 24
efm01_perf.ucf: .. 24

Slave FIFO transactions .. 24

Software ... 26
Introduction .. 26
Changes to previous versions ... 26
Windows ... 27

Requirements .. 27
Driver installation ... 27
Build UDK .. 27

Prerequisites ... 27
Solution creation and build .. 27

Linux .. 29
Requirements .. 29
Drivers .. 29

USB .. 29
PCI ... 30

Build UDK .. 31
Prerequisites ... 31
Makefile creation and build ... 31

Use APIs in own projects ... 33
C++ API .. 33

Add project to UDK build .. 33
C API .. 33
.NET API .. 34

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -57- preliminary

http://www.cesys.com/

API Functions in detail ... 34
API Error handling ... 34

C++ and .NET API ... 34
C API .. 34
Methods/Functions ... 35

Device enumeration .. 36
Methods/Functions ... 36

Information gathering ... 39
Methods/Functions ... 39

Using devices .. 41
Methods/Functions ... 41

UDKLab ... 46
Introduction .. 46
The main screen .. 47
Using UDKLab ... 48

FPGA configuration ... 49
FPGA design flashing .. 50
Projects ... 50
Initializing sequence .. 51
Content panel ... 53

Additional information ... 56
References .. 56
Links ... 56

Table of contents .. 57

EFM01 / C1050-4107 http://www.cesys.com/

User Doc V1.1 -58- preliminary

http://www.cesys.com/

	Copyright information
	Overview
	Summary of EFM01
	Feature list
	Included in delivery

	Hardware
	SPARTAN-3E FPGA
	Module size
	Connectors and FPGA pinout
	Powering EFM01
	EFM01 configuration
	How to store configuration data in SPI Flash
	Loading SPI Flash via USB
	SPI Flash Indirect Programming Using FPGA JTAG Chain
	SPI Flash Direct Programming using iMPACT
	Program SPI Flash using external microcontrollers

	External expansion connectors

	FPGA design
	Cypress FX-2 LP and USB basics
	Clocking FPGA designs
	FX-2/FPGA slave FIFO connection
	Introduction to example FPGA designs
	FPGA source code copyright information
	FPGA source code license
	Disclaimer of warranty
	Design “efm01”
	Files and modules
	src/wishbone.vhd:
	src/efm01_top.vhd:
	src/wb_syscon.vhd:
	src/wb_intercon.vhd:
	src/wb_ma_fx2.vhd:
	src/wb_sl_bram.vhd:
	src/wb_sl_speedtest.vhd:
	src/wb_sl_gpio.vhd:
	src/wb_sl_flash.vhd:
	src/fx2_slfifo_ctrl.vhd:
	src/sync_fifo16.vhd:
	src/sfifo_hd_a1Kx18b0K5x36.vhd:
	src/flash_ctrl.vhd:
	efm01.ise:
	efm01.ucf:

	WISHBONE transactions
	WISHBONE signals driven by the master:
	WISHBONE signals driven by slaves:
	Example:

	Design “efm01_perf”
	Files and modules
	src/efm01_perf.vhd:
	src/fx2_slfifo_ctrl.vhd:
	src/sync_fifo16.vhd:
	efm01_perf.ise:
	efm01_perf.ucf:

	Slave FIFO transactions

	Software
	Introduction
	Changes to previous versions
	Windows
	Requirements
	Driver installation
	Build UDK
	Prerequisites
	Solution creation and build

	Linux
	Requirements
	Drivers
	USB
	PCI

	Build UDK
	Prerequisites
	Makefile creation and build

	Use APIs in own projects
	C++ API
	Add project to UDK build

	C API
	.NET API

	API Functions in detail
	API Error handling
	C++ and .NET API
	C API
	Methods/Functions

	Device enumeration
	Methods/Functions

	Information gathering
	Methods/Functions

	Using devices
	Methods/Functions

	UDKLab
	Introduction
	The main screen
	Using UDKLab
	FPGA configuration
	FPGA design flashing
	Projects
	Initializing sequence
	Content panel

	Additional information
	References
	Links

	Table of contents

