
EFM 01 examples

EFM-01-examples.pdf

This document was automatically created.

Please visit www.cesys.com for the latest version.

July 30, 2012, 9:58 pm

1/13

http://cesys.com//kunden/homepages/38/d320338549/htdocs/cesyscms/uploads/manuals/EFM-01-examples.pdf
http://www.cesys.com

Introduction to example FPGA designs

The CESYS EFM01 FPGA-module comes with some demonstration FPGA designs (part of the UDK) to
provide an easy starting point for your own development projects. The whole source code is written in VHDL.
Verilog and schematic entry design flows are not supported.

The design “efm01” demonstrates the implementation of a system-on-chip (SOC) with USB access to
peripherals like GPIOs, Flash Memory and BlockRAM. This design requires a protocol layer over the simple
USB bulk transfer (see CESYS application note “Transfer Protocol for CESYS USB products” for details),
which is already provided by CESYS software API.

The design “efm01_perf” allows high speed data transfers from and to the FPGA over USB and can be used
for software benchmarking purposes. This design uses 512 byte aligned USB bulk transfer without an
additional protocol layer.

The Spartan-3E XC3S500E Device is supported by the free Xilinx™ ISE Webpack development software.
You will have to change some options of the project properties for own applications.

A bitstream in the “*.bin”-format is needed, if you want to download your FPGA design using the CESYS
software API-functions LoadBIN() and ProgramFPGA(). The generation of this file is disabled by default in
the Xilinx™ ISE development environment. Check “createbinary configuration file” at right click “generate
programming file”=>properties=>generaloptions:

2/13

After ProgramFPGA() is called and the FPGA design is completely downloaded, the pin #FPGA_RESET
(note: the prefix # means, that the signal is active low) is automatically pulsed (HIGH/LOW/HIGH). This signal
can be used for resetting the FPGA design. The API-function ResetFPGA() can be called to initiate a pulse
on #FPGA_RESET at a user given time.

The following sections will give you a brief introduction about the data transfer from and to the FPGA over the
Cypress FX-2 USB peripheral controller's slave FIFO interface, the WISHBONE interconnection architecture
and the provided peripheral controllers.

The EFM01 uses only slave FIFO mode for transferring data.

For further information about the FX-2 slave FIFO mode see Cypress FX-2 user manual (EZ-USB_TRM.pdf)
and datasheet (cy7c68013a_8.pdf) and about the WISHBONE architecture see specification B.3
(wbspec_b3.pdf).

3/13

Design “efm01”

An on-chip-bus system is implemented in this design. The VHDL source code shows you, how to build a 32
Bit WISHBONE based shared bus architecture. All devices of the WISHBONE system support only SINGLE
READ / WRITE Cycles. Files and modules having something to do with the WISHBONE system are labeled
with the prefix “wb_”. The WISHBONE master is labeled with the additional prefix “ma_” and the slaves are
labeled with “sl_”.

WISHBONE system overview

4/13

Files and modules

src/wishbone.vhd:

A package containing datatypes, constants, components, signals and information for software developers
needed for the WISHBONE system. You will find C/C++-style “#define”s with important addresses and values
to copy and paste into your software source code after VHDL comments (“--”).

src/efm01_top.vhd:

This is the top level entity of the design. The WISHBONE components are instantiated here.

src/wb_syscon.vhd:

This entity provides the WISHBONE system signals RST and CLK. It uses #FPGA_RESET and SYSCLK as
external reset and clock source. SYSCLK is identically to FX2_IFCLK. That means FX-2 slave FIFO interface
and WISHBONE system are fully synchronous.

src/wb_intercon.vhd:

All WISHBONE devices are connected to this shared bus interconnection logic. Some MSBs of the address
are used to select the appropriate slave.

src/wb_ma_fx2.vhd:

This is the entity of the WISHBONE master, which converts the CESYS USB protocol into one or more 32 Bit
single read/write WISHBONE cycles. The low level FX-2 slave FIFO controller (fx2_slfifo_ctrl.vhd) is used
and 16/32 bit data width conversion is done by using special FIFOs (sfifo_hd_a1Kx18b0K5x36.vhd).

src/wb_sl_bram.vhd:

A internal BlockRAM is instantiated here and simply connected to the WISHBONE architecture. It can be
used for testing address oriented data transactions over USB.

src/wb_sl_speedtest.vhd:

A single register with zero delay slave handshake response. It can be used for benchmarking purposes. Auto
address increment must be deactivated.

src/wb_sl_gpio.vhd:

This entity controls the signals at connectors J3 and J4. 50 I/Os can be used as general purpose I/Os. Each
of these I/Os can be configured as an in- or output. Additional pinout information is provided by an embedded
comma separated values file after VHDL comments (“--”).

5/13

src/wb_sl_flash.vhd:

The module encapsulates the low level FLASH controller flash_ctrl.vhd. The integrated command register
supports the BULK ERASE command, which erases the whole memory by programming all bits to '1'. In write
cycles the bit values can only be changed from '1' to '0'. That means, that it is not allowed to have a write
access to the same address twice without erasing the whole flash before. The read access is as simple as
reading from any other WISHBONE device. Please see the SPI-FLASH data sheet (m25p40.pdf) for details
on programming and erasing. It is used for programming FPGA configuration bitstream to SPI-FLASH.

src/fx2_slfifo_ctrl.vhd:

This controller copies data from FX-2 endpoints to internal FPGA buffers (sync_fifo16.vhd) and vice versa.

src/sync_fifo16.vhd:

This entity is a general purpose synchronous FIFO buffer with 15 data entries. It is build of FPGA distributed
RAM.

src/sfifo_hd_a1Kx18b0K5x36.vhd:

This entity is a general purpose synchronous FIFO buffer with mismatched port widths. It is build of a FPGA
BlockRAM.

src/flash_ctrl.vhd:

The low level FLASH controller for the 4MBit SPI FLASH memory. It supports reading and writing of four
bytes of data at one time as well as erasing the whole memory.

efm01.ise:

Project file for XilinxTM ISE

efm01.ucf:

User constraint file with timing and pinout constraints

6/13

Wishbone transactions

The software API-functions ReadRegister(), WriteRegister() lead to one and ReadBlock(), WriteBlock() to
several consecutive WISHBONE single cycles.
Bursting is not allowed in the WISHBONE demo application. The address can be incremented automatically
in block transfers. You can find details on enabling/disabling the burst mode and address auto-increment
mode in the CESYS application note “Transfer Protocol for CESYS USB products” and software API
documentation.

CESYS USB transfer protocol is converted into one or more WISHBONE data transaction cycles. So the
FX-2 becomes a master device in the internal WISHBONE architecture. Input signals for the WISHBONE
master are labeled with the postfix “_I”, output signals with “_O”.

WISHBONE signals driven by the master

• STB_O: strobe, qualifier for the other output signals of the master, indicates valid data and control
signals

• WE_O: write enable, indicates, if a write or read cycle is in progress
• ADR_O[31:0]: 32-Bit address bus, the software uses BYTE addressing, but the WISHBONE system

uses DWORD (32-Bit) addressing. The address is shifted two bits inside the WISHBONE master
module

• DAT_O[31:0]: 32-Bit data out bus for data transportation from master to slaves

WISHBONE signals driven by slaves

• DAT_I[31:0]: 32-Bit data in bus for data transportation from slaves to master
• ACK_I: handshake signal, slave devices indicate a successful data transfer for writing and valid data on

bus for reading by asserting this signal, slaves can insert wait states by delaying this signal, it is
possible to assert ACK_I in first clock cycle of STB_O assertion using a combinatorial handshake to
transfer data in one clock cycle (recommendation: registered feedback handshake should be used in
applications, where maximum data throughput is not needed, because timing specs are easier to meet)

7/13

The WISHBONE signals in these illustrations and explanations are shown as simple bit types or bit vector
types, but in the VHDL code these signals could be encapsulated in extended data types like arrays or
records.

Example:

...
port map
(
 ...
 ACK_I => intercon.masters.slave(2).ack,
 ...

Port ACK_I is connected to signal ack of element 2 of array slave, of record masters, of record intercon.

8/13

Copyright information

FPGA source code copyright information

This source code is copyrighted by CESYS GmbH / GERMANY, unless otherwise noted.

FPGA source code license

THIS SOURCECODE IS NOT FREE! IT IS FOR USE TOGETHER WITH THE CESYS

EFM01 USB CARD (ARTICLE-NR.: C1050-4107) ONLY! YOU ARE NOT ALLOWED TO

MODIFY AND DISTRIBUTE OR USE IT WITH ANY OTHER HARDWARE, SOFTWARE

OR ANY OTHER KIND OF ASIC OR PROGRAMMABLE LOGIC DESIGN WITHOUT THE

EXPLICIT PERMISSION OF THE COPYRIGHT HOLDER!

Disclaimer of warranty

THIS SOURCECODE IS DISTRIBUTED IN THE HOPE THAT IT WILL BE USEFUL, BUT

THERE IS NO WARRANTY OR SUPPORT FOR THIS SOURCECODE. THE COPYRIGHT

HOLDER PROVIDES THIS SOURCECODE "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THIS

SOURCECODE IS WITH YOU. SHOULD THIS SOURCECODE PROVE DEFECTIVE,

YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

IN NO EVENT WILL THE COPYRIGHT HOLDER BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE THIS SOURCECODE (INCLUDING

BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THIS

SOURCECODE TO OPERATE WITH ANY OTHER SOFTWARE-PROGRAMS,

9/13

HARDWARE-CIRCUITS OR ANY OTHER KIND OF ASIC OR PROGRAMMABLE LOGIC

DESIGN), EVEN IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

10/13

Design “efm01_perf”

This design is intended to demonstrate behavior of low level slave FIFO controller entity fx2_slfifo_ctrl. It
handles the FX-2 slave FIFO interface.
It can be synthesized in two modes, data loopback mode and infinite data source/sink mode with 16 bit
counting data source.

Ports of fx2_slfifo_ctrl connected to FX-2 are labeled with prefix fx2_ and ports connected to user logic are
labeled with prefix app_.
Sometimes the abbreviations _h2p_ (host to peripheral) and _p2h_ (peripheral to host) are used in signal
names to indicate data flow direction.

Files and modules

src/efm01_perf.vhd:

This is the top level module. It instantiates the low level slave FIFO controller (fx2_slfifo_ctrl.vhd). A generic
variable selects between data loopback and infinite data mode at synthesis time.

src/fx2_slfifo_ctrl.vhd:

See Wishbone example “Design efm01”

src/sync_fifo16.vhd:

See Wishbone example “Design efm01”

efm01_perf.ise:

Project file for XilinxTM ISE.

efm01_perf.ucf:

User constraint file with timing and pinout constraints.

11/13

12/13

Slave FIFO transactions

The software API functions ReadBulk() and WriteBulk() lead to 512 byte aligned USB bulk transfers without
CESYS USB transfer protocol. So it is possibly to achieve maximum data rates over USB. fx2_slfifo_ctrl
checks FX-2 FIFO flags and copies data from FX-2 endpoint buffers to FPGA and vice versa. So the USB
data link looks like any other FPGA FIFO buffer to user logic.

FIFO transactions with ReadBulk() and WriteBulk() at user logic side

The upper waveform demonstrates the behavior of app_fifo_wr_full_o and app_fifo_wr_count_o when there
is no transaction on the slave FIFO controller side of the FIFO. During simultaneous FIFO-read- and
FIFO-write-transactions, the signals do not change. The signal app_fifo_wr_full_o will be cleared and
app_fifo_wr_count_o will decrease, if there are read-transactions at the slave FIFO controller side, but no
write-transactions at the application side.

The lower waveform demonstrates the behavior of app_fifo_rd_empty_o and app_fifo_rd_count_o when
there is no transaction at the slave FIFO controller side of the FIFO. During simultaneous FIFO-read- and
FIFO-write-transactions, the signals do not change. The signal app_fifo_rd_empty_o will be cleared and
app_fifo_rd_count_o will increase, if there are write-transactions on the slave FIFO controller side, but no
read-transactions at the application side. Please note the one clock-cycle delay between app_fifo_rd_i and
app_fifo_rd_data_o!

The signals app_usb_h2p_pktcount_o[7:0] and app_usb_p2h_pktcount_o[7:0] (not shown) are useful to fit
the 512 byte USB bulk packet alignment. They are automatically incremented, if the appropriate read- (
app_fifo_rd_i) or write-strobe (app_fifo_wr_i) is asserted. These signals count 16 bit data words, not data
bytes! 512 byte alignment is turned into a 256 16 bit word alignment at this interface.

13/13

	CESYS
	EFM 01 examples
	Wishbone example
	Files
	Transactions
	Copyright information

	Performance Example
	Files
	Transactions

